Войти на сайт

или
Регистрация

Навигация


Скачать работу на тему: Формации конечных групп

Раздел: Математика
Количество знаков с пробелами: 26501
Количество таблиц: 0
Тип файла: документ Word (.docx)
Размер файла: 2.04 МБ
Вся база рефератов, курсовых, дипломных работ и прочих учебных материалов предоставляется бесплатно. Используя материалы сайта Вы подтверждаете, что ознакомились с пользовательским соглашением и согласны со всеми его пунктами в полной мере.

Похожие работы

Скачать
25620
0
0

... Тогда и только тогда  – минимальная -замкнутая тотально насыщенная не -разложимая формация, когда , где  – отличное от  простое число. Минимальные -замкнутые тотально насыщенные не -формации. Класс всех разрешимых групп с нильпотентной длиной не превосходящей  совпадает с произведением  (число сомножителей равно ) и является наследственной тотально насыщенной формацией. Теорема 3.6. Тогда и ...

Скачать
38215
0
0

... 1.6 . В главе 2 получено описание наследственных насыщенных -формаций Шеметкова, теорема 2.2 . В главе 3 в классе конечных разрешимых групп получено описание наследственных формаций Фиттинга , замкнутых относительно произведения -подгрупп, индексы которых не делятся на некоторое фиксированное простое число, теорема 3.3 . Список использованных источников 1. Васильев, А.Ф. О максимальной ...

Скачать
57480
0
0

... 13-A]. 2. Получено описание наследственных насыщенных сверхрадикальных формаций, критические группы которых разрешимы [20-A]. 3. В классе конечных разрешимых групп получено описание наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных -подгрупп взаимно простых индексов [18-A]. 4. Доказано, что любая разрешимая 2-кратно насыщенная формация , замкнутая ...

Скачать
31839
0
0

... -подгруппами, индексы которых взаимно просты, наследственно насыщенным формациям В данном разделе в классе конечных разрешимых групп получена классификация наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных -подгрупп, индексы которых взаимно просты. 2.1 Теорема [18-A]. Пусть  --- наследственная насыщенная формация, --- ее максимальный внутренний ...

0 комментариев


Наверх