Войти на сайт

или
Регистрация

Навигация


Скачать работу на тему: Тройные и кратные интегралы

Раздел: Математика
Количество знаков с пробелами: 12032
Количество таблиц: 0
Тип файла: документ Word (.docx)
Размер файла: 297.18 КБ

Количество изображений: 8, показано 8

Вся база рефератов, курсовых, дипломных работ и прочих учебных материалов предоставляется бесплатно. Используя материалы сайта Вы подтверждаете, что ознакомились с пользовательским соглашением и согласны со всеми его пунктами в полной мере.

Похожие работы

Скачать
15035
0
26

... так: , (10) где F1 и F2 – функции, полученные при подстановке в функцию f вместо x, y, z их выражений через цилиндрические (8) или сферические (9) координаты. 1.4 Геометрические и физические приложения кратных интегралов 1) Площадь плоской области S: (11) Пример 1. Найти площадь фигуры D, ограниченной линиями у = 2, у = 5. Решение. Эту площадь удобно вычислять, считая у ...

Скачать
20707
0
2

... выражения типа дивергенции по п- мерной области и интеграл по ограничивающей ее сверхповерхности S с уравнением L(x,y,z,…)=0. Если придерживаться прежних обозначений, то формула имеет вид   (3) Впрочем, Остроградский не применял геометрических образов и терминов, которыми пользуемся мы: геометрия многомерных пространств в то время еще не существовала. В “Мемуаре об исчислении вариаций кратных ...

Скачать
46169
0
217

... и докажите сходимость полученного разложения к порождающей функции. Исследовать на абсолютную и условную сходимость . Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету МАТЕМАТИЧЕСКИЙ АНАЛИЗ Билет № 12 Сформулируйте теорему Ролля и объясните ее геометрический смысл. Исследуйте функцию на выпуклость и вогнутость. Какая ...

Скачать
44324
0
22

... Из этой теоремы следует, что класс функций, представимых рядами Фурье, довольно широк. Поэтому ряды Фурье нашли широкое применение в различных отделах математики. Особенно успешно ряды Фурье применяются в математической физике и её приложениях к конкретным задачам механики и физики. Этот вопрос можно решить с помощью теоремы Дирихле. («Краткий курс высшей математики», Шнейдер и др., стр. 181) ...

0 комментариев


Наверх