Войти на сайт

или
Регистрация

Навигация


Скачать работу на тему: Теория случайных функций

Раздел: Математика
Количество знаков с пробелами: 2884
Количество таблиц: 3
Тип файла: документ Word (.docx)
Размер файла: 35.56 КБ

Количество изображений: 1, показано 1

Вся база рефератов, курсовых, дипломных работ и прочих учебных материалов предоставляется бесплатно. Используя материалы сайта Вы подтверждаете, что ознакомились с пользовательским соглашением и согласны со всеми его пунктами в полной мере.

Похожие работы

Скачать
66594
1
0

... случайная величина приобрела статус полноценного математического понятия, ей необходимо дать строго формализованное определение. Это было сделано в конце 20-х годов А.Н. Колмогоровым в небольшой статье, посвященной аксиоматике теории вероятностей, а затем в подробностях изложено в его знаменитой книге «Основные понятия теории вероятностей». Подход Колмогорова стал теперь общепринятым, поскольку он ...

Скачать
96339
12
7

... damn(t)/dt =[daij(t)/dt] 1.3 ПОНЯТИЕ ДИНАМЧЕСКОГО ОБЬЕКТА. Физический объект - физическое устройство, характеризуемое некоторым числом свойств, соответствующих целям его использования. В теории систем существенным является не физическое, а математическое описание свойств объекта и соотношений между ними. В теории систем объектом А является абстрактный объект, связанный с множеством ...

Скачать
100095
5
2

... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1.  Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2.  ...

Скачать
30959
0
0

... ≠ j) X(t) = mx(t) + ∑ Viφi(t) (t ? T) Следует: K(t, t’) = ∑ Diφi(t)φi(t’) Эту формулу называют каноническим разложением корреляционной функции случайного процесса. В случае уравнения X(t) = mx(t) + ∑ Viφi(t) (t ? T) Имеют место формулы: X(t) = mx(t) + ∑ Viφ(t) ∫ x(τ)dt = ∫ mx(τ)dτ + ∑ Vi ...

0 комментариев


Наверх