Изучение упругого и неупругого ударов шаров

5821
знак
1
таблица
0
изображений

Министерство образования РФ

Рязанская государственная радиотехническая академия

Кафедра ОиЭФ

Контрольная работа

«ИЗУЧЕНИЕ УПРУГОГО И НЕУПРУГОГО УДАРОВ ШАРОВ»

Выполнил ст. гр. 255

Ампилогов Н. В.

Проверил

Малютин А. Е

Рязань 2002г.

Цель работы: изучение законов сохранения импульса и механической энергии на примере ударного взаимодействия двух шаров; определение средней силы удара, коэффициента восстановления скорости и энергии деформации шаров.

Приборы и принадлежности: установка для изучения упругого и неупругого ударов шаров ФПМ-08.

Элементы теории

Удар (соударение) – это столкновение двух или нескольких тел, при котором взаимодействие длиться очень короткое время. При этом часть энергии данных тел полностью или частично переходит в потенциальную энергию упругой деформации или во внутреннюю энергию тел.

В качестве меры механического взаимодействия тел при ударе вместо ударной силы служит её импульс за время удара.

1)        

где <> - средняя сила удара; t – время ударного взаимодействия.

Если импульс изменяется на конечную величину D(m) за время t, то из второго закона динамики следует, что

2)        

Тогда <F> можно выразить так

3)          


где m1 и m2 – массы взаимодействующих тел; DV1 и DV2 изменение скоростей данных тел при ударе.

Абсолютно упругий удар – это удар при котором механическая энергия тел не переходит в другие механические виды энергии, и кинетическая энергия переходит полностью в потенциальную энергию упругой деформации (затем обратно).

Абсолютно неупругий удар – это удар при котором потенциальной энергии не возникает, кинетическая энергия полностью или частично переходит во внутреннюю энергию. Суммарный импульс данной системы сохраняется, а большая часть кинетической энергии переходит в тепло.

Линяя удара – это линия перпендикулярная поверхностям соударения обоих тел и проходящая через точку касания данных тел при ударе.

Прямой удар – есть удар, при котором вектора скоростей движения центров масс данных тел параллельны линии удара (перед непосредственным взаимодействием).

Центральный удар – это прямой удар, при котором центры масс соударяющихся тел лежат на линии удара.

Косой удар – это удар не являющийся прямым.

В данном случае будем считать, что система шаров на экспериментальной установке является изолированной. Тогда на основании законов сохранения импульса и энергии будет справедлива следующая формула

4)        

5)         ,

6)         где m1 и m2 – массы шаров; ,  и ,  - их скорости до и после взаимодействия.


Из (4) и (5) выражаем скорости шаров после столкновения  и

7)          7)

В данном случае рассматривался – абсолютно упругий удар. Но в действительности кинетическая энергия тел после соударения становиться меньше их первоначальной энергии на величину, которую можно найти так:

8) ,

где Kс – коэффициент восстановления скорости. Эта часть кинетической энергии тел при ударе преобразуется в их внутреннюю энергию.

Коэффициент восстановления скорости можно найти по следующей формуле:

9)

Если при соударении потеря кинетической энергии отсутствует (Kс = 1), то удар называется абсолютно упругим, а при Kс = 0 абсолютно неупругим. Если же 0 < Kс < 1, то удар является не вполне упругим.

Применительно к соударяющимся шарам, один из которых покоится, формулу (4) можно записать так:

10) , а для абсолютно неупругого удара .


Скорости шаров до и после удара можно определить по формулам:

11) ; 12) ; 13)

где l – расстояние от точки подвеса до центра тяжести шаров (l = 470 ± 10 мм.), a0 – угол бросания правого шара, a1 и a2 – углы отскока соответствующих шаров.

Расчётная часть

ti´10-6

Dti´10-6

(Dti´10-6)2

a1i

Da1i

a2i

Da2i

1 76 -14 196 -0,5° 0,25° 12° -0,2° 0,04°
2 103 13 169 -0,5° 0,25° 13° 0,8° 0,64°
3 96 6 36 0,5° 0,25° 11° -1,2° 1,44°
4 93 3 9 2,5° 13° 0,8° 0,64°
5 82 -8 64 0,5° 0,25° 12° -0,2° 0,04°

90

2,5°

12,2°

После работы с установкой имеем значение следующих величин: (угол бросания правого шара) a0 = 15°; (массы правого и левого шаров соответственно) m1 = 112,2 ´ 10-3 кг, m2 = 112,1 ´ 10-3 кг; (длина бифилярных подвесов обоих шаров) l = 470 ´ 10-3 м; (погрешность значения длин бифилярных подвесов) Dl = 0,01 м; (цена деления микросекундометра) ct = 10-6; (цена деления градусных шкал) ca = 0,25°.

При известном среднем арифметическом значении времени  найдём погрешность измерения данной величины:


   

 с.

 с.

При известных значениях  и  найдём погрешность их измерения (в радианах, при p = 3,14):

 рад.

 рад.

 рад.

 рад.

 при Dсл » 0;рад.

 при sсл » 0; sa0 = sс; ;

 рад.

Теперь найдём скорости данных шаров до соударения (V1, V2) и их скорости после взаимодействия (U1, U2). При этом (скорость левого шара) V2 = 0 т. к. он покоиться до удара. Значения остальных скоростей находят из следующих формул (через l, a и g):

  

 м/с2;  м/с2;  м/с2;

Найдём погрешности вычисления данных скоростей.

 

м/с.

м/с.

м/с.

По формуле (3) найдём (силу кратковременного взаимодействия шаров) < F >. Учитывая, что DV1 = |U1 - V1| и DV2 = |U2 – V2|.

  Н.

  Н.

Значение силы удара шаров найдём, как действительное значение от < F1 > и < F2 >:

  Н.

Найдём погрешность величины < F > по формуле

(погрешность вычисления массы пренебрежимо мала)

Н.

Н.

Н.

Далее по формуле (9) найдём коэффициент восстановления скорости Kс:

; при V2 = 0,

Пользуясь формулой для вычисления погрешности косвенных величин

Найдём DKс. Для получения более точного значения погрешности, используя формулы (11, 12, 13), сведём исходную формулу для вычисления Kс (9) к формуле с аргументом состоящим только из значений прямых измерений (t,a1,a2).

= 4,6 ´ 10-2

Теперь по формуле (8) вычислим значение энергии деформации шаров DEk:

  Дж.

Осталось найти погрешность D(DEK). При использовании следующей формулы предполагается, что V1 и Kс являются прямыми измерениями.

DEK = 0,17 Дж.


Информация о работе «Изучение упругого и неупругого ударов шаров»
Раздел: Физика
Количество знаков с пробелами: 5821
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
89077
4
25

... изменение. 3. Что такое термодинамическая вероятность состояния (статис­тический вес). 4. Статистический смысл изменения энтропии. 5. Первый закон термодинамики. 6. Вывод рабочей формулы (36) данной работы. 7. Второй закон термодинамики и его статистический смысл. 6. ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ И УДЕЛЬНОЙ ТЕПЛОТЫ ПЛАВЛЕНИЯ МЕТАЛЛА Цель работы Исследовать фазовый переход первого рода ...

Скачать
136506
5
32

... , нужно посредством правил подсчета значащих цифр округлить результат математических вычислений так, чтобы точность их соответствовала точности данных, полученных от измерения. ИЗУЧЕНИЕ КИНЕМАТИКИ И ДИНАМИКИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ НА МАШИНЕ АТВУДА Цель работы Экспериментальная проверка основных уравнений и законов поступательного движения тела на специально сконструированной для этого ...

Скачать
121629
26
25

... в 2 раза. 180. Найти относительную скорость движения двух частиц, движущихся навстречу друг другу со скоростями u1 = 0,6×c и u2 = 0,9×c. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ Молекулярная физика и термодинамика – разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в них атомов и молекул (макроскопические системы ...

Скачать
50943
24
10

... 17.6 - 2.5 2 22.5 109.4 20.1 16.7 - 3.4 - 2.8 3 22.5 175. - 2.4   Задание 4. Проверка закона сохранения импульса.   ОТЧЕТ   ……………………………………………………………………………. о выполнении лабораторной работы №2 Законы сохранения в механике. Колебательное движение   Задание 1. Исследование затухания колебаний маятника Упражнение 1. Закон затухания.   Таблица 1. ...

0 комментариев


Наверх