СИНТЕЗ И СВОЙСТВА ПОЛИМЕРОВ НА ОСНОВЕ бис- (АЦЕТИЛФЕНОКСИФЕНИЛ) -о-КАРБОРАНА
В предыдущих исследованиях [1] для синтеза карборансодержащих полимеров полифениленового типа был применен метод, основанный на полициклоконденсации моно- и дифункциональных ацетилароматических соединений или их этилкеталей, когда в качестве дифункциональных мономеров использовались диацетилдибензилкарбораны. Полученные полимеры имели ценный комплекс практически важных свойств, однако синтез мономеров был сложен в технологическом аспекте, например из-за необходимости получения динатрийкарборана [2].
В настоящей работе в качестве карборансодержащего мономера использовали бис-(ацетилфеноксифенил)-о-карборан (АФОК) [3], синтезированный конденсацией 4-иоддифенилоксида с ацетиленом в присутствии (Ph<tPh-PdCl2 с последующим переводом ди(феноксифенил) ацетилена в соответствующее производное карборана и ацетилированием последнего по реакции Фриделя — Крафтса и далее исследовали свойства полимеров на основе АФОК и моноацетилариленов различного строения. Форполимеры синтезировали по известным методикам [1, 5] взаимодействием в присутствии сухого хлористого водорода либо ацетилароматических соединений в присутствии триэтилортоформиата, либо их этилкеталей, согласно схемы, которую без учета побочных реакций можно представить процессом тримеризационной полициклоконденсации.
Судя по тому, что в результате циклоконденсации 4-ацетил[бас-(4-феиоксифенил)о-карборана] (I) в этих условиях 1, 3, 5-замещен-ный циклотример (II) образуется с выходом порядка 40%, полимеры на основе АФОК должны, вероятно, иметь в своей цепи значительную долю дипноновых (метилхалконовых) или поливиниленовых дефектных фрагментов [5].
Основные свойства форполимеров приведены в табл. 1. Форполимеры хорошо растворимы в хлороформе, бензоле, ацетоне, толуоле, диоксане.
Выход для большинства полимеров превышает 90%. В отличие от полимеров из работы [1] разница между найденным и рассчитанным для элементарного звена содержанием бора незначительна (табл. 1).
В ИК-спектрах полимеров присутствуют полосы в области 800—900, 1500 и 1600 см-1, характеризующие бензольные кольца и полосы при 2600 см-1, относящиеся к карборановым ядрам. Неожиданным оказалось то, что в спектрах полимеров на основе АФОК относительная интенсивность полосы при 1680 см _1, характеризующей концевые ацетильные группы, значительно ниже, чем у полимеров на основе диацетил-ароматических соединений без карборановых ядер, что свидетельствует о незначительном количестве этих групп.
Ранее было замечено [6], что продолжительность синтеза полимеров полифениленового типа, которая до определенного предела влияет на их выход, следует ограничить периодом до начала гелеобразования.
В случае полимеров на основе АФОК и ацетофенона (рис. 1, кривая 1), АФОК и 4-ацетилфеноксифенил-о-карборана (рис. 1, кривая 2), а также этилкеталей АФОК и 4-ацетилфеноксифенил-о-карборана (рис. 1, кривая 3) оказалось, что в процессе синтеза гелеобразования не происходит. Выход форполимеров, а также значения приведенной вязкости (0,05—0,06 дл / г) быстро достигают максимального значения. В ИК-спектрах всех полимеров, синтезированных > 5 мин, полоса при 1680 см-1, характеризующая концевые ацетильные группы, практически исчезает. Полимеры с высоким выходом образуются в течение 10 мин из ацетильных мономеров и в течение 20 мин (при расходе НС1 в 2 раза меньшем) из кеталей, причем их свойства в дальнейшем практически не изменяются.
То, что полимеры содержат незначительное количество концевых групп и в процессе синтеза не образуется гель, а молекулярная масса, судя по вязкости, быстро достигает постоянной величины, обусловлено, вероятно, обрывом цепи за счет образования макроциклов, как это предполагали для полимеров на основе диацетилбензола [7] и диэтинилбензола [8].
Для нахождения оптимальных условий синтеза целесообразно исследовать свойства полимеров в зависимости от соотношения исходных компонентов. Было замечено, что с увеличением содержания ацетофенона в исходной смеси выход форполимеров несколько уменьшается. Это, возможно, связано с тем, что ацетофенон все в большей степени вступает в автоконденсацию с образованием 1, 3, 5-трифенилбензола, который не выделяется при осаждении. При меньшем количестве ацетофенона преобладают процессы, связанные с образованием макроциклов, а при большем — его избыток идет на блокирование концевых ацетильных групп. Таким образом, с точки зрения получения полимеров с максимальным количеством концевых групп, оптимальным является эквимольное соотношение компонентов.
Далее были синтезированы форполимеры на основе АФОК и различных моноацетилариленов (табл. 1, полимеры 4—7). Более низкий выход полимеров 6 и 7 связан, по-видимому, с тем, что в этих случаях монофункциональные мономеры 4-ацетилдифенилил-о-карборан и 4-аце-тилбензил-о-карборан остаются непрореагировавшими, что наблюдалось с помощью ТСХ. В остальных случаях ди- и монофункциональные мономеры активно вступают в конденсационные процессы, при этом монофункциональные мономеры частично расходуются на автоконденсацию с образованием циклотримеров, которые были обнаружены в маточнике с помощью ТСХ на силуфоле (элюэнт хлороформ).
Изучение термических свойств полученных полимеров было начато с анализа термической устойчивости форполимера и модельного соединения П.
Для соединения II (рис. 2, кривая 1), которое представляет собой циклотример, характерна незначительная (~10%) потеря в весе при 400—500°, что может быть связано с деструкцией феноксифенильных групп.
Рис. 1. Зависимость выхода спиртонерастворимой части полимеров на основе АФОК и 4-ацетилфеноксифенил-о-карборана (1), этилкеталей АФОК и 4-ацецетифенокси-фенил-о-карборана (2), АФОК и ацетофенона (3) от продолжительности синтеза
Рис. 2. Кривые динамического ТГА на воздухе соединения II (1), форполимера 3 из таблицы 1 (2) и структурированного при 400° полимера на его основе (3)
Выше 400° деструкция замедляется и в целом при 800—900° коксовый остаток составляет 90%. Выше 250° характер кривой 2 (рис. 2), относящейся к форполимеру на основе АФОК, в определенной степени близок характеру кривой 1, при этом потери в весе до 400° (20%) обусловлены, вероятно, конденсацией или частичной деструкцией ацетильных групп. При температурах выше 400 ° для полимеров полифениленового типа (рис. 2, кривые 2, 3), как и для других классов полимеров [9], характерен привес, в данном случае небольшой, связанный с окислением карборанового ядра. В целом потери в весе полимеров тем меньше, чем выше содержание бора в исходном форполимере, т. е. для тех полимеров, где карборановое ядро содержится одновременно в нефункциональном и монофункциональном исходном мономере (табл. 1).
Для выяснения термической устойчивости структурированных при 400° полимеров в зависимости от содержания в них карборансодержащих фрагментов были синтезированы сополимеры на основе АФОК и 4,4'-диацетилдифенилоксида (ДАДФО) при их различных соотношениях и исследован их ТГА в атмосфере аргона.
В табл. 2 представлены свойства таких сополимеров. Из данных таблицы видно, что карборансодержащий мономер легко вступает в сопо-ликонденсацию. Найденное содержание бора хорошо согласуется с рассчитанным. Можно наблюдать, как с увеличением доли АФОК уменьшается вязкость полимеров, что связано, как мы предполагаем, с обрывом цепи за счет макроциклизации в карборансодержащих сополимерах.
Рис. 3. Интегральные кривые динамического ТГА в атмосфере аргона и дифференциальные кривые газовыделения сополимера АФОК 75% - ДАДФО 25% (а) и «Ацефена-1» (в). 1а, 1в - Н2; 2а, 2в - СН4; За, Зв - СО
Рис. 4. Зависимость количества выделяющихся газообразных продуктов при нагревании полимеров до 900° в инертной атмосфере от содержания бора в исходном фор-сополимере. 1 — Н2, 2 — СО, 3 — СН4
На рис. 3 представлены данные ТГА в атмосфере аргона и интегральные кривые газовыделения, относящиеся к полимерам 1 и 4 (табл. 2). Карборансодержащий полимер (рис. 3, кривая 1а) характеризуется тем, что водород начинает выделяться при 450°, а его интенсивное выделение, которое связано с протеканием различных процессов в ароматических звеньях полимерных цепей, начинается при 500—550°. В то же время выделение водорода в полимерах без карборановых ядер (рис. 3, кривая 1е) начинается при 500°, и интенсивное его выделение при 550— 600°. Замедление процесса деструкции (рис. 3, кривая в) наблюдается только при 600°, к моменту начала интенсивного выделения водорода. В целом количество выделяющегося водорода в карборансодержащих полимерах выше, чем в полимере без карборановых ядер и возрастает пропорционально увеличению их количества в исходном форполимере (рис. 4). Пропорционально увеличивается и коксовый остаток карборансодержащих полимеров (рис. 3). Таким образом, скорость деструкции цепей в карборансодержащих полимерах уменьшается и тем заметнее, чем больше в них карборановых групп.
4-Иоддифенилоксид получали по методике, аналогичной [10]. К смеси 74,2 г (0,18 моля) мелко растертого иода в 200 мл (4 моля) ледяной уксусной кислоты прибавляли 100 г (0,58 моля) дифенилоксида. К смеси при интенсивном перемешивании добавляли в течение 3 ч смесь 7,5 мл (0,138 моля) H2S04 и И мл (0,244 моля) HN03. Реакционную массу выливали в ледяную воду, разбавляли хлороформом (50 мл), промывали водой до нейтральной реакции 10%-ным раствором Na2S03, водой и сушили над СаС12. Затем отгоняли хлороформ и полученный иоддифенилоксид перегоняли в вакууме (1 мм рт. ст.) при 140—150°. Перекристаллизовывали из спирта. Выход 91%. ГпЛ=42° (по лит. данным [11] 48°) Найдено, %: С 48,7; Н 3,0. Вычислено, %: С 48,7; Н 3,1.
Дифенокситолан синтезировали по методу [12]. К смеси 91 г 4-иоддифенилокси-да, 3,145 г трифенилфосфина, 1,055 г PdCl2 в 750 мл диэтиламина добавляли 0,575 г одноиодистой меди и в атмосфере аргона при интенсивном перемешивании пропускали ацетилен в течение 8 ч, после чего оставляли смесь на ночь. Выпавшие кристаллы отфильтровывали и перекристаллизовывали из бензола. Получали 35 г (84%) дифенокситолана. Гдл= 170-171°. Найдено, %: С 86,5; Н 4,6; Вычислено, %: С 86,2; Н 5,0.
£кс-(феноксифенил)-о-карборан получали обработкой дифенокситолана декарбо-раном в присутствии диметпланилина [13]. Продукт хроматографировали на колонке с А1203 (элюэнт — бензол : петролейный эфир=1:3), а затем перекристаллизовывали из спирта. Выход 80%. Гпп=120-122° по лит. данным [3] 120-122°).
Бис-(4-ацетилфеноксифенил)-о-карборан синтезировали ацетилированием бис-(феноксифенил)-о-карборана в присутствии А1С13 хлористым ацетилом в растворе нитрометана согласно методике [2]. ГПл=183—184°. Найдено,.%: С 63,8; Н 5,8; В 18,0. Вычислено, %: С 63,8; Н 5,7; В 19,1.
Этилкеталь бис-(4-ацетилфеноксифенил)-о-карборана получали в присутствии триэтилортоформиата и НС1 по методике [14]. Растворители и образующиеся побочные продукты отгоняли в вакууме и продукт использовали в дальнейших синтезах без дополнительной очистки; пв25 1,5632. Найдено, %: С 63,9; Н 7,7; В 14,5. Вычислено, %: С 64,0; Н 7,3; В 15,2.
4'-Ацетил[бис-(4-феноксифенил)-о-карборан] (I) синтезировали аналогично АФОК, но используя 1,1 моль ацетилирующей смеси на 1 моль исходного бис-(фе-ноксифенил)-о-карборана. Выход —7%; Тил= 108—109°. Найдено, %: С 64,9; Н 6,0; В 20,2. Вычислено, %: С 64,4; Н 5,8; В 20,7.
1,3,5-Три[бис-(феноксифенил)-о-карборан]илбензол (II) получали циклоконденсацией соединения I в присутствии триэтилортоформиата при пропускании сухого НС1 со скоростью 14 мл/мин. Время реакции 30 мин при загрузке соединения I 0,2 г и концентрации его в бензоле 1 моль/л. Продукт II выделяли хроматографически (силикагель, хлороформ). По ТСХ-Д/=0,9. Выход 40%, Гпл=136-140°. Найдено, %: В 20,4. Вычислено, %: В 21,4. Карборансодержащие моноацетиларилены синтезировали по известной методике [2].
Ацетилфеноксифенил-о-карборан (rn„=142—143°). Найдено, %: В 30,3. Вычислено, %: В 30,5. Этилкеталь ацетилфеноксифенил-о-карборана 7,пл=105—107°. Найдено, %: В 26,7. Вычислено, %: В 25,2. Ацетилбензил-о-карборан 7ПЛ=70— 71° (по лит. данным [2] 70-71°).
Ацетилдифенилил-о-карборан — Гпл=187—188° (по лит. данным [2] 187—188°); 1-Фенил-2-апетилбензил-о-карборан — Упл=129-132° (по лит. данным [2] 113—115°. Термическую деструкцию изучали методом динамического термогравиметрического анализа на приборе «Setaram» при скорости подъема температуры 5 град/мин (навеска 20 мг). Одновременно проводили анализ газообразных продуктов (Нг, СН4, СО) аа хроматографе ЛХМ-8МД.
ЛИТЕРАТУРА
1. Коршак В.В., Тепляков М.М., Гелашвили Ц.Л., Калинин В. Н., Захаркин Л.И. //Высокомолек. соед. А. 1980. Т. 22. № 2. С. 262.
1. Калинин В.Н., Тепляков М.М., Гелашвили Ц.Л., Савицкий А.М., Дмитриев В.М., Захаркин Л.И. II Докл. АН СССР. 1977. Т. 236. № 2. С. 367.
2. Хотина И.А., Калачев А.И., Тепляков М.М., Валецкий П.М., Коршак В.В., Виноградова С.В., Калинин В. И., Захаркин Л.И., Станко В.И., Климова А.И. А. с. 869290 СССР//Б. И. 1982. № 30. С. 296.
3. Тепляков М.М., Хотина И.А., Гелашвили Ц.Л., Коршак В.В. //Докл. АН СССР. 1983. Т. 271. № 4. С. 874.
4. Тепляков М.М. Успехи химии. 1979. Т. 48. № 2. С. 344..
5. Коршак В.В., Тепляков М.М., Сергеев В.А.//Докл. АН СССР. 1973. Т. 208. № 6. С. 1360.
6. Коршак В.В., Тепляков М. М., Какауридзе Д.М., Кравченко И.В. // Докл. АН СССР. 1974. Т. 219. № 1. С. 117.
7. Bracke W.l/l. Polymer Sci. A-l. 1972. V. 10. № 7. P. 2097.
8. Бекасова Н.И. // Успехи химии. 1984. Т. 53. № 1. С. 107.
9. Новиков А.Н. //Журн. общ. химии. 1959. Т. 26. № 1. С. 59.
10. Scarborough Н.А. // Soc. 1929. № 10. Р. 2361.
11. Sonogashira К., Tohda Y., Hagihara N. // Tetrahedron Letters. 1975. № 50. P. 4467.
12. Захаркин Л.И., Станко В.И., Братцев В.А., Чаповский Ю.А., Охлобыстин О.Ю. Ц Изв. АН СССР. Сер. хим. 1963. № 12. С. 2238.
13. Чеботарев В.П., Тепляков М.М., Коршак В.В. //Изв. АН СССР. Сер. хим. 1974. № 6. С. 1407.
0 комментариев