ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
КАМСКАЯ ГОСУДАРСТВЕННАЯ ИНЖЕНЕРНО-ЭКОНОМИЧЕСКАЯ АКАДЕМИЯ
Кафедра
Реферат
на тему: Физические методы очистки газовых потоков
от вредных примесей.
Выполнил: студент группы
Проверил:
Набережные Челны
2006
Содержание
Введение
1. Пылеосадительные камеры и инерционные пылеуловители.
2. Циклоны.
3. Механические фильтры.
4. Электрофильтры.
5. Литература
Введение
Физические способы применяются в тех случаях, когда газовый поток содержит вредные примеси в виде пьши (размеры частиц 5-50 мкм), тумана и дыма (размеры частиц 0,1 -5мкм). Эти методы основаны на осаждении твердых частиц и мелких капель тумана на поверхности пылеуловителей и фильтрующих элементов. С этой целью используют пылеуловители и фильтры различной конструкции.
Физические методы очистки газовых потоков от вредных примесей широко распространены на обогатительных фабриках, металлургических заводах, тепловых электростанциях, сжигающих уголь и мазут, на предприятиях деревообработки, в шинной промышленности и в производстве резиновых технических изделий.
Выбор метода очистки газового потока осуществляется после того, как определяются основные характеристики взвешенных частиц — пыли или тумана. В случае пыли к ним относятся: размеры частиц, слипаемость, способность к абразивному износу поверхности оборудования, смачиваемость водой, электрическая проводимость, способность к самовозгоранию и взрыву.
В соответствии с основными характеристиками пыли и ее концентрацией в газовом потоке осуществляется выбор оборудования и способа пылеулавливания.
1. Пылеосадительные камеры и инерционные пылеуловители.
При размерах частиц пыли 25-50 мкм и высоких их концентрациях в газовом потоке (более 50 г/м3) обычно используют пылеосадительные камеры и инерционные пылеуловители (рис. 6.5).
Пылеосадительные камеры в большинстве случаев применяются для предварительной очистки сильно загрязненных газовых потоков от крупных частиц пыли. Запыленный газ в пылеосадительной камере имеет скорость движения 0,2-1,5 м/с. При этом частицы пыли, имеющие размеры более 50 мкм, осаждаются на полках и стенках камеры, а очищенный газ выбрасывается в атмосферу или подается на следующую стадию очистки — от более мелких частиц.
После образования слоя пыли определенной толщины на стенках и полках аппарата включается вибрационное устройство, и пыль падает вниз.
Степень очистки запыленного газа в пылеосадительных камерах не превышает 40 - 50%.
В инерционных пылеуловителях скорость запыленного газа на входе в аппарат составляет 5-15 м/с. Принцип действия инерционных пылеуловителей заключается в следующем.
При увеличении скорости движения запыленного газа на частицы пыли одновременно действуют силы тяжести и инерционные силы. Если резко изменить направление движения газа, то частицы пыли будут продолжать свое движение по инерции, что приведет к выделению пыли из газового потока.
На рис. 6.56 изменение направления движения газа достигается с помощью перегородки. При этом частицы пыли по инерции направляются вниз, а очищенный газ выводится сверху.
Для запыленного газового потока с размерами частиц 25-30 мкм степень очистки достигает 65 - 80%. Такие аппараты находят применение в металлургической промышленности для первичной очистки газовых потоков от пыли.
2. Циклоны.
Широкое применение для очистки газовых потоков от пыли в различных отраслях промышленности находят циклоны (рис. 6.6).
Циклоны улавливают пыль с размерами частиц более 5 мкм и температурой газового потока до 500 °С.
Очистка газа от пыли осуществляется следующим образом. Запыленный газ движется внутри циклона по спирали сверху вниз, и частицы пыли отбрасываются центробежной силой к стенке. В конусообразной части корпуса циклона диаметр спирали газа постепенно уменьшается. Такое уменьшение диаметра в определенный момент обусловливает резкое изменение направления газа, который попадает в выхлопную трубу и выбрасывается в
атмосферу. Частицы пыли продолжают движение по стенке вниз и попадают в пылесборник. Степень очистки газовых потоков в циклонах достигает 90%.
Для обеспечения высокой степени очистки газовых потоков от взвешенных частиц применяются механические, электрические и мокрые фильтры различной конструкции.
3. Механические фильтры.
В основе работы механических фильтров лежит процесс фильтрования, в ходе которого твердые частицы или туман жидкого вещества задерживаются на фильтрующем элементе, а газовый поток полностью проходит через элемент. В зависимости от назначения и величины входной и выходной концентраций пыли фильтры условно разделяют на три класса:
— фильтры тонкой очистки, предназначенные для улавливания более 99% пыли из промышленных газов с низкой входной концентрацией порядка 1 мг/м3 и скоростью фильтрования 10 м/с. Такие фильтры применяются для улавливания особо токсичных частиц, например, радиоактивных, и для ультратонкой очистки воздуха. После однократного использования они заменяются новыми;
— воздушные фильтры, используемые в системах приточной вентиляции и кондиционирования воздуха в помещениях. Они работают при концентрации пыли не более 50 мг/м3 и при скорости газового потока 2,5-3,0 м/с. Воздушные фильтры могут быть регенерируемыми и нерегенерируемыми;
— промышленные тканевые, волокнистые и зернистые фильтры, применяемые для очистки больших объемов промышленных газовых потоков с концентрацией пыли до 60 мг/м3. Все промышленные фильтры периодически подвергаются регенерации.
Среди промышленных фильтров наибольшее применение находят тканевые фильтры, изготовленные в виде трубок или рукавов, так называемые «рукавные фильтры».
На рисунке 6.7 представлена схема рукавного фильтра.
Запыленный газ поступает в корпус 1 фильтра, проходит через тканевые рукава 3 и выбрасывается в атмосферу. Частицы пыли удерживаются на внутренней поверхности рукавов, по мере их накопления включается встряхивающее устройство 2. Пыль с поверхности тканевых рукавов осыпается вниз, и регенерированный фильтр снова включается в работу.
4.Электрофильтры.
Они применяются в тех случаях, когда электрические свойства взвешенных частиц позволяют достичь высокой степени очистки. Электрофильтры обеспечивают выделение из газовых потоков мельчайших частиц пыли и тумана. Действие электрофильтров основано на ионизации газа между двумя электродами с образованием положительно и отрицательно заряженных ионов (рис. 6.8).
Для этого к электродам подводится постоянный электрический ток высокого напряжения мощностью порядка 40-75 кВт. При высокой разности потенциалов газ между электродами ионизируется полностью, и происходит его слабое свечение наподобие короны вокруг электрода 1, присоединенного к отрицательному полюсу источника тока. Такой электрод обычно называют коронирующим электродом. Отрицательно заряженные ионы движутся к противоположно заряженному электроду 2, который называется осадительным электродом.
Если газовый поток содержит частицы пыли или тумана, то отрицательно заряженные ионы адсорбируются на их поверхности и увлекают эти частицы к осадительному электроду. На поверхности электрода частицы отдают свой заряд и отделяются от электрода или падают при механическом встряхивании.
Мокрые фильтры представляют собой вертикальные полые аппараты (скрубберы). Они используются в тех случаях, когда частицы пыли, содержащиеся в газовом потоке, хорошо смачиваются водой. В мокрых фильтрах газовый поток поступает снизу аппарата и орошается мелкими каплями воды. При этом частицы пыли хорошо смачиваются водой и поглощаются каплями дождя из газового потока. Очищенный газовый поток выбрасывается в атмосферу.
Литература
1. Арустамов Э.А. Природопользование. М.: Дашков и К, 2005.
2. Криксунов Е.А. Экология. М.: Дрофа, 1995.
3. Контроль содержания вредных веществ в воздухе рабочей зоны: Метод, указания. — М.: Минздрав СССР, 1985
4. Миркин Б.М., Наумова Л.Г. Экология России. М.: АО МДС, Юнисам, 1995.
5. Муравьева С. И., Прохорова Е. К. Справочник по контролю вредных веществ в воздухе. — М.: Химия, 1988.
6. Мухутдинова А.А. Основы и менеджмент промышленной экологии. Казань: Магариф, 1998.
7.Снакин В. В. Экология и охрана природы: Словарь-справочник. — М.: Академия, 2000.
Похожие работы
... отчистки. В частности от такого опасного вещества как сернистый ангидрид SO2. Цель этой курсовой работы рассмотреть наиболее эффективные методы очистки газовых потоков от сернистого ангидрида с точки зрения экологии и экономики. 1. Сернистый ангидрид как один из опаснейших видов загрязняющих веществ Сернистый ангидрид – наиболее распространенное соединение серы. Среди газообразных и ...
... с последующей очисткой выбросов в циклонах марки ЦОЛ-9. По условиям технологии работы оборудования Хлебокомбината и БКК залповые и аварийные выбросы исключены. 3.4 Мероприятия по защите атмосферы в ЗАО «Челны Хлеб» Для улавливания выбросов на предприятии имеется 19 газопылеулавливающих установок, которые улавливают в основном твердые вещества. Для очистки воздуха от мучной пыли на силосах ...
... , а также их смеси с активным илом, к которому добавляют питательные вещества. В настоящее время область промышленного применения метода ограничена только теми компонентами газовых потоков, которые поддаются биохимическому окислению. 4. Расчет показателей оценки абсорбционных методов очистки газового потока Наименование параметров До очистки Варианты очистки Показатель относительной ...
... . Газы в промышленности обычно загрязнены вредными примесями, поэтому очистка широко применяется на заводах и предприятиях для технологических и санитарных (экологических) целей. Промышленные способы очистки газовых выбросов от газо- и парообразных токсичных примесей можно разделить на три основные группы: абсорбция жидкостями; адсорбция твердыми поглотителями ; каталитическая очистка. В ...
0 комментариев