Проектування систем автоматизації

56171
знак
2
таблицы
0
изображений

Вступ

 

Автоматизація технологічних процесів є важливим засобом підвищення продуктивності праці, скорочення витрат матеріалів та енергії, покращення якості продукції, впровадження прогресивних методів управління виробництвом і підвищення надійності праці. При цьому важливе значення надається впровадження нової техніки. Всі сучасні автоматизовані системи управління побудовані на базі управляючоїт обчислювальної техніки мікропроцесорних засобів (мікропроцесорних контролерів (МПК)) та електронних обчислювальних машин (ЕОМ). Застосування МПК та ЕОМ покращує функціональні можливості обладнання, систем управління, значно підвищує надійність їх роботи і в кінцевому результаті позитивно відображується на якості продукції.

В даному курсовому проекті розроблена система автоматизації дільниці розстоювання та випікання хліба пшеничного на хлібокомбінаті №10 м. Києва на базі мікропроцесорного контролера Реміконт Р-130.

Запропонована система автоматизації дає можливість підвищити ефективність виробництва за рахунок зниження упікання хліба, економії пари та палива, знизити собівартість хліба, покращити якість хліба, його смакові властивості і зовнішній вигляд.

 


Схема автоматизації та її опис

Регулювання температури в розстойній шафі здійснюється за допомогою термоелектричного перетворювача ТХК-0179 (поз.2а). Природній сигнал від датчика надходить до уніфікованого перетворювача БУТ-20 (поз.2б), що входить до комплекту контролера Р-130. Перетворювач БУТ-20 перетворює природній сигнал термопари в уніфікований сигнал 0...5 мА. За допомогою міліамперметра М-1611 (поз.2в) відображується виміряна температура. Уніфікований сигнал надходить до контролера для програмної обробки. Даний контур має позиційне регулювання, тому з дискретного виходу контролера сигнал надходить до пакетного перемикача SA1, за допомогою якого встановлюється автоматичний чи ручний режим управління. Також в розстійній шафі здійснюється контроль за температурою за допомогою термоелектричного перетворювача ТХК-0179 (поз. 3а) та манометричного термометра ТГП-100 (поз. 1а).

Регулювання температури в пекарних камерах здійснюється зміною подачі газу до топки. Вимірювання температури здійснюється за допомогою термоелектричних перетворювачів ТХК-0179 (поз. 7а, 8а). Природні сигнали від датчиків надходять до уніфікованих перетворювачів БУТ-20 (поз. 7б, 8б), що входять до комплекту контролера Р-130. Перетворювач БУТ-20 перетворює природній сигнал термопари в уніфікований сигнал 0…5 мА. За допомогою міліамперметрів М-1611 (поз. 7в, 8в) відображуються виміряні температури. Уніфіковані сигнали надходять до контролера для програмної обробки. Регулювання витрати газу здійснюється за допомогою виконавчих механізмів МЭО-87Р. Тому з контролера сигнали надходять до блоків управління БУ-21 (поз. 7г, 8г) системи «Каскад». За допомогою блоків управління оператор має змогу перевести систему в режим ручного управління і змінювати витрати палива за допомогою кнопок управління, які розташовані на лицьовій панелі блока управління. З блоків управління сигнал надходить до магнітних пускачів ПМЕ-111 (поз. 7е,8е), а звідти – до виконавчих механізмів МЭО-87Р (поз. 7ж,8ж) та регулюючих органів (поз. 7з, 8з). Для полегшення процесу регулювання в ручному режимі з виконавчих механізмів знімаються сигнали, що показують положення виконавчих механізмів. Сигнали надходять до показчиків положення ДУП-М (поз. 7д,8д), які розташовані на щиті оператора. Також за допомогою контролера здійснюється аварійна сигналізація за допомогою сигнальних ламп НL1, НL2, НLЗ, НL4.

Температура по зонах печі вимірюється за допомогою манометричних термометрів типу ТГП-100 (поз. 4а, 5а, 6а). Чутливі елементи термометрів розміщені в пекарній камері печі. Показові елементи розташовані біля печі.

Регулювання вологості в розстійній шафі здійснюється зміною витрати пари, що подається до шафи. Вимірювання вологості здійснюється за допомогою автоматичного психрометричного гігрометра АПГ-206 (поз. 18а). За допомогою міліамперметра М-1611 (поз. 18б) відображується виміряна вологість. Уніфікований сигнал надходить до контролера для програмної обробки. Даний контур має аналогове регулювання витрати пари, же здійснюється за допомогою виконавчого механізму МЭО-87Р. Тому з контролера сигнал надходить до блоку управління БУ-21 (поз. 18в) системи «Каскад». За допомогою блока управління оператор має змогу перевести систему в режим ручного управління і змінювати витрату палива за допомогою кнопок управління, які розташовані на лицьовій панелі блока управління. З блока управління сигнал надходить до магнітного пускача ПМЕ-111 (поз. 18д), а звідти - до виконавчого механізму МЭО-87Р (поз. 18е). Для полегшення процесу регулювання в ручному режимі з виконавчого механізму знімається сигнал, що показує положення виконавчого механізму. Сигнал надходить до покажчика положення ДУП-М (поз. 18г), який розташований на щиті оператора.

Регулювання вологості в зоні зволоження здійснюється зміною витрати пари, що подається до печі. Вимірювання вологості здійснюється за допомогою автоматичного психрометричного гігрометра АПГ-206 (поз. 21а). За допомогою міліамперметра М-1611 (поз. 21б) відображується виміряна вологість. Уніфікований сигнал надходить до контролера для програмної обробки. Даний контур має аналогове регулювання витрати пари, яке здійснюється за допомогою виконавчого механізму МЭО-87Р. Тому з контролера сигнал надходить до блоку управління БУ-21 (поз. 21в) системи «Каскад». За допомогою блока управління оператор має змогу перевести систему в режим ручного управління і змінювати витрату палива за допомогою кнопок управління, які розташовані на. лицьовій панелі блока управління. З блока управління сигнал надходить до магнітного пускача ПМБ-111 (поз. 21д), а звідти - до виконавчого механізму МЭО-87Р (поз. 21е). Для полегшення процесу регулювання в ручному режимі з виконавчого механізму знімається сигнал, що показує положення виконавчого механізму. Сигнал надходить до покажчика положення ДУП-М (поз. 21г), який розташований на щиті оператора

Регулювання часу випічки здійснюється зміною швидкості поду. Вимірювання швидкості поду здійснюється за допомогою тахометричного датчика ТЭРА-В (поз. 24а). За допомогою міліамперметра М-1611 (поз. 24б) відображується виміряна вологість. Уніфікований сигнал надходить до контролера для програмної обробки. Даний контур має аналогове регулювання виграти пари, яке здійснюється за допомогою виконавчого механізму МЭО-87Р. Тому з контролера сигнал надходить до блоку управління БУ-21 (поз. 24в) системи «Каскад». За допомогою блока управління оператор має змогу перевести систему в режим ручного управління і змінювати витрату палива за допомогою кнопок управління, які розташовані на лицьовій панелі блока управління. З блока управління сигнал надходить до магнітного пускача ПМЕ-111 (поз. 24д), а звідти - до виконавчого механізму МЭО-87Р (поз. 24е). Для полегшення процесу регулювання в ручному режимі з виконавчого механізму знімається сигнал, що показує положення виконавчого механізму. Сигнал надходить до показчика положення ДУП-М (поз. 24г), який розташований на щиті оператора Також за допомогою контролера здійснюється аварійна сигналізація за допомогою сигнальної лампи HL15.

Регулювання співвідношення витрати повітря та газу здійснюється витратою повітря. Вимірювання витрати повітря здійснюється за допомогою діафрагми сегментної ДК-6 (поз. 15а, 16а) , а вимірювання витрати газу здійснюється за допомогою Труби Вентурі (поз. 15b, 16в). За допомогою міліамперметрів М-1611 (поз. 15б,15г,16б,16г) відображуються виміряні витрати. Уніфіковані сигнали надходять до контролера для програмної обробки. Регулювання витрат здійснюється за допомогою виконавчих механізмів МЭО-87Р. Тому з контролера сигнали надходять до блоків управління БУ-21 (поз. 15д,16д) системи «Каскад». За допомогою блоків управління оператор має змогу перевести систему в режим ручного управління і змінювати витрати повітря за допомогою кнопок управління, які розташовані на лицьовій панелі блока управління. З блоків управління сигнал надходить до магнітних пускачів ПМБ-111 (поз. 15ж, 16ж), а звідти - до виконавчих механізмів МЭО-87Р (поз. 15з, 16з). Для полегшення процесу регулювання в ручному режимі з виконавчих механізмів знімається сигнал що показує положення виконавчих механізмів. Сигнали надходять до показників положення ДУП-М (поз. 15e, 16е), які розташовані на щиті оператора.

Аварійна сигналізація і захист печі від згасання полум'я здійснюється за допомогою контролера. Контроль наявності полум'я проводиться за допомогою електродів контролю факелу (поз. 22а, 23а). Від електродів контролю факелу сигнали надходять до дискретних входів контролера Контролер проводить автоматичне управління запірними клапанами подачі газу. Також здійснюється сигналізація за допомогою сигнальних ламп НL1З, HL14, HL16, HL17, HL18, HL19.

Аварійна сигналізація і захист від підвищення температури в топках здійснюється за допомогою контролера. Контроль за температурою проводиться за допомогою вимірювальних перетворювачів для термоелектричних опорів Ш-79 (поз. 9а, 9б, 10а, 10б). Перевищення температури сигналізується за допомогою сигнальних ламп НL5, НL6, НL7, НL8.

Аварійна сигналізація і захист від перевищення тиску газу в газопроводі та розрідження в топці здійснюється також за допомогою Р-130. Контроль за тиском та розрідженням проводиться за допомогою вимірювальних перетворювачів тиску-розрідження "Сапфір 22ДИ" (поз. 11а, 123,13а, 14а) і сигналізується за допомогою сигнальних ламп НL9, НL10, НL11, НL12.

Управління електродвигунами проводиться в автоматичному режимі та в ручному режимі за допомогою кнопочних станцій SВ1-SВ10.

№ пор Номер позиції за схемою Найменування і технічна характеристика виробу Тип марка Одиниця виміру Кількість Примітка
1.    Термоелектричний перетворювач. Межі вимірювання -50..450°С ТХК-0179 шт 1 Луцький приладобудівний завод
2.    Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

3.    Термоелектричний перетворювач. Межі вимірювання -50..450°С ТХК-0179 шт 1 Луцький приладобудівний завод
4.    Блок підсилення термопар. Живлення 24В. Вих. сигнал 0..5мА БУТ-20 шт 1 Входить в комплект Р-130
5.    Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

6.    Блок управління системи "Каскад". Живлення 220В. Габаритні розміри 60*60*180 БУ-21 шт 1
7.    Покажчик положення. Напруга живлення 220В. Споживана потужність 5ВА. Габаритні розміри 80*120*97 ДУП-М шт 1 Чебоксарський з-д ел. ВМ
8.    Пускач магнітний. Напруга 220В ПМЕ-111 шт 1
9.    Електричний ВМ. Час повного ходу валу 25 с. Живлення 220В, 50 Гц. МЭО-87р шт 1 Чебоксарський з-д ел. ВМ
10.    Двохсідельний регулюючий орган (клапан) 25ч30нж шт 1
11.    Термоелектричний перетворювач. Межі вимірювання -50..450°С ТХК-0179 шт 1 Луцький приладобудівний завод
12.    Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

13.    Манометричний термометр. Межі вимірювання 0..400°С Клас точності 1 ТГП-100 шт 1 м.Казань "Теплоконтроль
14.    Манометричний термометр. Межі вимірювання 0..400°С Клас точності 1 ТГП-100 шт 1 м.Казань "Теплоконтроль
15.    Манометричний термометр. Межі вимірювання 0..400°С Клас точності 1 ТГП-100 шт 1 м.Казань "Теплоконтроль
16.    Термоелектричний перетворювач. Межі вимірювання -50..450°С ТХК-0179 шт 1 Луцький приладобудівний завод
17.    Блок підсилення термопар. Живлення 24В. Вих. сигнал 0..5мА БУТ-20 шт 1 Входить в комплект Р-130
18.    Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

19.    Блок управління системи "Каскад". Живлення 220В. Габаритні розміри 60*60*180 БУ-21 шт 1
20.    Покажчик положення. Напруга живлення 220В. Споживана потужність 5ВА. Габаритні розміри 80*120*97 ДУП-М шт 1 Чебоксарський з-д ел. ВМ
21.    Пускач магнітний. Напруга 220В ПМЕ-111 шт 1
22.    Електричний ВМ. Час повного ходу валу 25 с. Живлення 220В, 50 Гц. МЭО-87р шт 1 Чебоксарський з-д ел. ВМ
23.    Двохсідельний регулюючий орган (клапан) 25ч30нж шт 1
24.    Термоелектричний перетворювач. Межі вимірювання -50..450°С ТХК-0179 шт 1 Луцький приладобудівний завод
25.    Блок підсилення термопар. Живлення 24В. Вих. сигнал 0..5мА БУТ-20 шт 1 Входить в комплект Р-130
26.    Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

27.    Блок управління системи "Каскад". Живлення 220В. Габаритні розміри 60*60*180 БУ-21 шт 1
28.    Покажчик положення. Напруга живлення 220В. Споживана потужність 5ВА. Габаритні розміри 80*120*97 ДУП-М шт 1 Чебоксарський з-д ел. ВМ
29.    Пускач магнітний. Напруга 220В ПМЕ-111 шт 1
30.    Електричний ВМ. Час повного ходу валу 25 с. Живлення 220В, 50 Гц. МЭО-87р шт 1 Чебоксарський з-д ел. ВМ
31.    Двохсідельний регулюючий орган (клапан) 25ч30нж шт 1
32.    Вимірювальний перетворювач для термоелектричних опорів. Клас точності 0,4. Вих. сигнал 0..5мА Ш-79 шт 1
33.    Вимірювальний перетворювач для термоелектричних опорів. Клас точності 0,4. Вих. сигнал 0..5мА Ш-79 шт 1
34.    10а Вимірювальний перетворювач для термоелектричних опорів. Клас точності 0,4. Вих. сигнал 0..5мА Ш-79 шт 1
35.    10б Вимірювальний перетворювач для термоелектричних опорів. Клас точності 0,4. Вих. сигнал 0..5мА Ш-79 шт 1
36.    11а Вимірювальний перетворювач тиску-розрідження. Кл. точності 0,5 "Сапфір- 22ДИ" шт 1 Тартуський приладобудівний з-д.
37.    11б Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

38.    12а Вимірювальний перетворювач тиску-розрідження. Кл. точності 0,5 "Сапфір- 22ДИ" шт 1 Тартуський приладобудівний з-д.
39.    12б Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

40.    13а Вимірювальний перетворювач тиску-розрідження. Кл. точності 0,5 "Сапфір- 22ДИ" шт 1 Тартуський приладобудівний з-д.
41.    13б Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

42.    14а Вимірювальний перетворювач тиску-розрідження. Кл. точності 0,5 "Сапфір- 22ДИ" шт 1 Тартуський приладобудівний з-д.
43.    14б Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

44.    15а

Труба Вентурі на тиск до 4.0МПа для трубопроводів внутрішнім діаметром від 50 до1400мм і модулів від 0.1 до 0.6.Температура контр.середовища

-40..150°С.

шт 1 ПО "Киев Коммунмаш"
45.    15б Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

46.    15в Діафрагма сегментна для внутрішніх діаметрів від 50 до520мм.Вих сигнал 0..5мА. ДК-6 шт 1

З-д

"Маноме тр" м. Москва, ПО

"Геофиз прибор" м.Казань

47.    15г Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

48.    15д Блок управління системи "Каскад". Живлення 220В. Габаритні розміри 60*60*180 БУ-21 шт 1
49.    15е Покажчик положення. Напруга живлення 220В. Споживана потужність 5ВА. Габаритні розміри 80*120*97 ДУП-М шт 1 Чебоксарський з-д ел. ВМ
50.    15ж Пускач магнітний. Напруга 220В ПМЕ-111 шт 1
51.    15з Електричний ВМ. Час повного ходу валу 25 с. Живлення 220В, 50 Гц. МЭО-87р шт 1 Чебоксарський з-д ел. ВМ
52.    15і Двохсідельний регулюючий орган (клапан) 25ч30нж шт 1
53.    16а

Труба Вентурі на тиск до 4.0МПа для трубопроводів внутрішнім діаметром від 50 до1400мм і модулів від 0.1 до 0.6.Температура контр.середовища

-40..150°С.

шт 1 ПО "Киев Коммунмаш"
54.    16б Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

55.    16в Діафрагма сегментна для внутрішніх діаметрів від 50 до520мм.Вих сигнал 0..5мА. ДК-6 шт 1

З-д

"Маноме тр" м. Москва, ПО

"Геофиз прибор" м.Казань

56.    16г Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

57.    16д Блок управління системи "Каскад". Живлення 220В. Габаритні розміри 60*60*180 БУ-21 шт 1
58.    16е Покажчик положення. Напруга живлення 220В. Споживана потужність 5ВА. Габаритні розміри 80*120*97 ДУП-М шт 1 Чебоксарський з-д ел. ВМ
59.    16ж Пускач магнітний. Напруга 220В ПМЕ-111 шт 1
60.    16з Електричний ВМ. Час повного ходу валу 25 с. Живлення 220В, 50 Гц. МЭО-87р шт 1 Чебоксарський з-д ел. ВМ
61.    16і Двохсідельний регулюючий орган (клапан) 25ч30нж шт 1
62.    17а Автоматичний психрометричний гігрометр. Вих. сигнал 0..5мА. Температура вимір. сер-ща-40..200°С. Живлення 220В, 50Гц, споживана потужність 800 ВА АПГ-206 шт 1

м. Горі

ГОЗ АП

63.    17б Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

64.    18а Автоматичний психрометричний гігрометр. Вих. сигнал 0..5мА. Температура вимір. сер-ща-40..200°С. Живлення 220В, 50Гц, споживана потужність 800 ВА АПГ-206 шт 1

м. Горі

ГОЗ АП

65.    18б Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

66.    18вг Блок управління системи "Каскад". Живлення 220В. Габаритні розміри 60*60*180 БУ-21 шт 1
67.    18г Покажчик положення. Напруга живлення 220В. Споживана потужність 5ВА. Габаритні розміри 80*120*97 ДУП-М шт 1 Чебоксарський з-д ел. ВМ
68.    18д Пускач магнітний. Напруга 220В ПМЕ-111 шт 1
69.    18е Електричний ВМ. Час повного ходу валу 25 с. Живлення 220В, 50 Гц. МЭО-87р шт 1 Чебоксарський з-д ел. ВМ
70.    18ж Двохсідельний регулюючий орган (клапан) 25ч30нж шт 1
71.    19а Автоматичний психрометричний гігрометр. Вих. сигнал 0..5мА. Температура вимір. сер-ща-40..200°С. Живлення 220В, 50Гц, споживана потужність 800 ВА АПГ-206 шт 1

м. Горі

ГОЗ АП

72.    19б Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

73.    20а Автоматичний психрометричний гігрометр. Вих. сигнал 0..5мА. Температура вимір. сер-ща-40..200°С. Живлення 220В, 50Гц, споживана потужність 800 ВА АПГ-206 шт 1

м. Горі

ГОЗ АП

74.    20б Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

75.    21а Автоматичний психрометричний гігрометр. Вих. сигнал 0..5мА. Температура вимір. сер-ща-40..200°С. Живлення 220В, 50Гц, споживана потужність 800 ВА АПГ-206 шт 1

м. Горі

ГОЗ АП

76.    21б Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

77.    21в Блок управління системи "Каскад". Живлення 220В. Габаритні розміри 60*60*180 БУ-21 шт 1
78.    21г Покажчик положення. Напруга живлення 220В. Споживана потужність 5ВА. Габаритні розміри 80*120*97 ДУП-М шт 1 Чебоксарський з-д ел. ВМ
79.    21д Пускач магнітний. Напруга 220В ПМЕ-111 шт 1
80.    21е Електричний ВМ. Час повного ходу валу 25 с. Живлення 220В, 50 Гц. МЭО-87р шт 1 Чебоксарський з-д ел. ВМ
81.    21ж Двохсідельний регулюючий орган (клапан) 25ч30нж шт 1
82.    22а

Електроди контролю

факелу.

шт 1
83.    23а

Електроди контролю

факелу.

шт 1
84.    24а

Тахометр електричний. Діапазон вимірюв. 16-60, 20-120 об/хв. Основна приведена похибка 2,5%

Вих. сигнал 0..5мА Живлення 220В,50Гц. Споживана потужність 100ВА

ТЭРА-В шт 1 Одесса "Пище-промавтоматика"
85.    24б Міліамперметр показуючий уніфікований. Вх сигнал 0..5мА М-1611 шт 1

м.Львів з-д

Львів-прнлад

86.    24в Блок управління системи "Каскад". Живлення 220В. Габаритні розміри 60*60*180 БУ-21 шт 1
87.    24г Покажчик положення. Напруга живлення 220В. Споживана потужність 5ВА. Габаритні розміри 80*120*97 ДУП-М шт 1 Чебоксарський з-д ел. ВМ
88.    24д Пускач магнітний. Напруга 220В ПМЕ-111 шт 1
89.    24е Електричний ВМ. Час повного ходу валу 25 с. Живлення 220В, 50 Гц. МЭО-87р шт 1 Чебоксарський з-д ел. ВМ
90.    24ж Двохсідельний регулюючий орган (клапан) 25ч30нж шт 1
91.    КМ1-КМ5 Пускач магнітний. Напруга 220/380В. Частота 50Гц. шт 5
92.    ЗВ1-ЗВ12 Кнопки управління КЕ-011 шт 12
93.    8А1-8А7 Пакетний перемикач. УП-5312 шт 7
94.    НІЛ-НЬ29 Лампи світлової сигналізації шт 29

Принципові схеми регулювання, управління, сигналізації та живлення

Принципова схема регулювання

На другому листі графічної частини, розроблена схема регулювання наступних параметрів:

·  температура в розстійній шафі;

·  вологість в розстійній шафі;

·  вологість в зоні зволоження печі;

·  температура в пекарних камерах;

·  швидкість руху поду;

·  аварійний захист і сигналізація згасання полум'я в печі;

·  витрата газу та повітря;

·  аварійний захист та сигналізація тиску в топці та тиску газу.

Температура в розстійній шафі регулюється за позиційним законом за допомогою електричного нагрівального елемента, який розташований в кондиціонері. Температура вимірюється за допомогою термоелектричного перетворювача (поз. 2а). Природній сигнал від термопари перетворюється в уніфікований за допомогою перетворювача (поз. 2б). Температура відображується за допомогою міліамперметра (поз. 2В), який розташований на щиті оператора. За допомогою вбудованого в клемник опору R ввімкненого паралельно джерелу струмовий сигнал 0...5 мА перетворюється в сигнал ...2 В, який придатний для сприйняття контролером. Сигнал від клемника Х2 надходить до аналогового входу ВАБ, звідки він надходить до порогового алгоблоку, який перетворює аналоговий сигнал в дискретний за таким, законом: якщо аналоговий сигнал на вході більший заданого - то на виході викає сигнал логічної «1», якщо ні - то сигнал логічного «0». Отриманий сигнал надходить до дискретного виходу А, де він інвертується і звідти сходить на клемник Х2. З клемника електричний сигнал надходить до електромагнітного реле KV9. В електричній схемі управління передбачено можливість ручного управління нагрівачем.

Регулювання вологості в розстійній шафі здійснюється за рахунок зміни витрати пари. Вологість в розстійній шафі вимірюється за допомогою автоматичного психрометричного гігрометру (поз. 18а) з уніфікованим вихідним сигналом 0... 5 мА. Для контролю вологості в розстіній шафі вона відображується за допомогою розташованого на щиті оператора міліамперметра поз. 18б. Далі уніфікований сигнал надходить до клемника контролерах Х2, де він перетворюється на сигнал 0.. .2В за допомогою ввімкненого паралельно опору. Сигнал 0... 2В надходить до контролера, де він проходить подальшу алгоритмічну обробку. Отриманий сигнал надходить до двох електромагнітних реле KV5 і KV6. Сигнал від електромагнітних реле надходить до блоку управління системи "Каскад" БУ-21 (поз. 18в) клем 2 і 10. За допомогою вбудованого в блок управління пакетного перемикача здійснюється перемикання контуру в автоматичний і ручний режими. Також тут встановлено кнопки, за допомогою яких здійснюється управління в ручному режимі. З блоку управління сигнал надходить до магнітного пускача ПМЕ-111 (поз. 18д), який підсилює сигнал. З магнітного пускача підсилений сигнал надходить до виконавчого механізму МЭО-87р, який діє на робочий орган. Також з виконавчого механізму з клем 13, 14, 16 сигнал надходить до покажчика положення виконавчого механізму типу ДУП-М (поз. 18г), який дає змогу оператору в ручному режимі регулювання спостерігати за положенням вентиля.

Температура в пекарній камері регулюється зміною витрати газу до топок. Піч ППЦ-1381 має дві топки, які регулюються за однаковими законами. Температура в пекарних камерах регулюється наступним чином: вимірюється температура за допомогою термоелектричних перетворювачів (поз. 7а, 8а). Природній сигнал від термопари перетворюється в уніфікований за допомогою перетворювачів (поз. 76, 8б). Температура відображується за допомогою міліамперметрів (поз.7в, 8в), які розташовані на щиті оператора. За допомогою вбудованих в клемник опорів R ввімкнених паралельно джерелу струмові сигнали 0...5 мА перетворюються в сигнали 0...2 В, яві здатні для сприймання контролером. Сигнали від клемника Х2 надходять аналогового входу ВАД звідки вони надходять до регулятора, який створює управляючі сигнали, які надходять до виходу контролера. Отримані сигнали надходять до електромагнітних реле КV1, КV2 і КVЗ, КV4. Сигнали електромагнітних реле надходять до блоків управління системи "Каскад" -21 (поз. 7г, 8г) клем 2 і 10. За допомогою вбудованих в блок управління пакетних перемикачів здійснюється перемикання контуру в автоматичний і ручний режими. Також тут встановлено кнопки, за допомогою яких здійснюється управління в ручному режимі. З блоків управління сигнали надходять до магнітних пускачів ПМЕ-111 (поз.7е, 8е), які підсилюють сигнали. З магнітних пускачів підсилені сигнали надходять до виконавчих механізмів МЭО-87р (поз. 7ж, 8ж), які діють на робочі органи. Також з виконавчих механізмів з клем 13, 14, 16 сигнали надходять до показчиків положення виконавчого механізму типу ДУП-М (поз.7д, 8д), які дають змогу оператору в ручному режимі регулювання спостерігати за положенням стилів.

Регулювання вологості в зоні зволоження печі здійснюється за рахунок зміни витрати пари. Вологість в печі вимірюється за допомогою автоматичного психрометричного гігрометру (поз. 21а) з уніфікованим одним сигналом 0.. .5 мА. Для контролю вологості в розстійній шафі вона відображується за допомогою розташованого на щиті оператора амперметра (поз. 21б). Далі уніфікований сигнал надходить до клемника контролера Х2, де він перетворюється на сигнал 0...2В за допомогою ввімкненого паралельно опору. Сигнал 0...2В надходить до контролера де він проходить подальшу алгоритмічну обробку. Логічний сигнал в контролері надходить до регулятора, який створює управляючий сигнал, який надходить до виходу контролера. Стриманий сигнал надходить до двох електромагнітних реле КV7 і КV8. Сигнал від електромагнітних реле надходить до блоку управління системи "Каскад" БУ-21 (поз. 21в) клем 2 і 10. За допомогою вбудованого в блок управління пакетного перемикача здійснюється перемикання контуру в автоматичний і ручний режими. Також тут встановлено кнопки, за допомогою яких здійснюється управління в ручному режимі. З блоку управління сигнал надходить до магнітного пускача ЛЕ-111 (поз. 21д), який підсилює сигнал. 3 магнітного пускача підсилений сигнал надходить до виконавчого механізму МЭО-87р, який діє на робочий стан. Також з виконавчого механізму з клем 13, 14, 16 сигнал надходить до показчика положення виконавчого механізму типу ДУП-М (поз. 21г), який дає змогу оператору в ручному режимі регулювання спостерігати за положенням вентиля.

Регулювання швидкості поду печі здійснюється за допомогою варіаційного редуктора. Швидкість поду печі вимірюється за допомогою електричного тахометра (поз. 24а) з уніфікованим вихідним сигналом 0.. .5 мА. Для контролю вологості в розстійній шафі вона відображується за допомогою розташованого на щиті оператора міліамперметра (поз. 24б). Далі уніфікований сигнал надходить до клемника контролера Х2, де він перетворюється на сигнал 0... 2В за допомогою ввімкненого паралельно опору. Сигнал 0...2В надходить до контролера де він проходить подальшу алгоритмічну обробку. Логічний сигнал в контролері надходить до регулятора, який створює управляючий сигнал, який надходить до виходу контролера. Отриманий сигнал надходить до блоку управління системи " Каскад" БУ-21 (поз. 24в) клем 2 і 10. За допомогою вбудованого в блок управління пакетного перемикача здійснюється перемикання контуру в автоматичний і ручний режими. Також тут встановлено кнопки, за допомогою яких здійснюється управління в ручному режимі. З блоку управління сигнал надходить до магнітного пускача ПМЕ-111 (поз. 24д), який підсилює сигнал. З магнітного пускача посилений сигнал надходить до виконавчого механізму МЭО-87р, який діє на робочий орган. Також з виконавчого механізму з клем 13, 14, 16 сигнал надходить до показчика положення виконавчого механізму типу ДУП-М (поз. 24г), який дає змогу оператору в ручному режимі регулювання спостерігати за положенням вентиля. В той же час в контролері сигнал від аналогового входу подається до алгоблоків порогового управління, які дають змогу сигналізувати про перевищення швидкості поду допустимих меж. Від порогових елементів сигнал подається до дискретного виходу ДВА, а звідти - до клемника Х2. На виході з реміконта відмикається сигнальна лампа, яка розташована на мнемосхемі щита оператора і сигналізує про перевищення швидкості поду допустимих меж.

Принципова схема управління і сигналізації

Регулювання співвідношення витрати газу та повітря здійснюється за рахунок зміни витрати повітря. Витрати вимірюються за допомогою Труби Вентурі та діафрагми сегментної (поз.15а, 15в) з уніфікованим вихідним сигналом 0...5 мА. Для контролю витрати газу та повітря вона відображується за допомогою розташованих на щиті оператора міліамперметрів (поз.15б, 15г). Далі уніфіковані сигнали надходить до клемника контролера Х2, де він перетворюється на сигнал 0...2В за допомогою ввімкнених паралельно опорів. Сигнал 0...2В надходить до контролера де він проходить подальшу алгоритмічну обробку. Логічний сигнал в контролер, надходить до регулятора, який створює управляючий сигнал, який надходить до виходу контролера. Отриманий сигнал надходить до двох електромагнітних реле КV11 і КV12. Сигнал від електромагнітних реле надходить до блоку управління системи "Каскад" БУ-21 (поз. 15д) клем 2 і 10. За допомогою вбудованого в блок управління пакетного перемикача здійснюється перемикання контуру в автоматичний і ручний режими. Також тут встановлено кнопки, за допомогою яких здійснюється управління в ручному режимі. З блоку управління сигнал надходить до магнітного пускача ТМЕ-111 (поз. 15ж), який підсилює сигнал. 3 магнітного пускача підсилений сигнал надходить до виконавчого механізму МЭО-87р, який діє на робочий орган. Також з виконавчого механізму з клем 13, 14, 16 сигнал надходить до покажчика положення виконавчого механізму типу ДУП-М (поз. 15 е), який дає змогу оператору в ручному режимі регулювання спостерігати за положенням вентиля.

Також за допомогою контролера здійснюється аварійна сигналізація і захист печі від згасання полум'я. Від електродів контролю факелу (поз. 22а) сигнал надходить до дискретного входу контролера. Контролер керує положенням двох запірних клапанів аварійного захисту печі. Положенням вентилів керують електромагнітні реле KV17 і KV18. В електричній схемі управління передбачено можливість ручного управління клапанами. Аварійна галізація здійснюється за допомогою сигнальних ламп НL1З, НL16, НL17. Аналогічно здійснюється аварійна сигналізація і захист печі від згасання полум'я другого пальника. Так само аналогічно здійснюється аварійна сигналізація і захист від перевищення температури в топці, тиску газу та тиску в топці.

За допомогою кнопок SВ11 та SВ12 проводиться перевірка сигналізації і квітування звукового сигналу. Сигнал від кнопок надходить до дискретного входу контролера, де за допомогою алгоритму здійснюється управління сигнальними лампами та електричним дзвінком.

Принципова схема живлення

Всі пристрої автоматизації для своєї роботи потребують живлення. При виборі кількості блоків живлення БП-21 слід керуватися тим, що ці блоки здійснюють живлення напругою 24В блок живлення має два виходи . До виходу 1 відмикають навантаження зі струмом 0,3 А, до виходу 2 таке навантаження відмикають лише в тому випадку, коли блок 'БП' не з’єднується з блоком 'БК", в протилежному випадку навантаження цього виходу має бути не більшим 40 мА. Якщо потрібно живити споживачі з більшим споживанням допускається з'єднання блоків живлення паралельно.

Для блока БК-1 від блоків БП-21 живляться електромагнітні реле ПЭ-21,які споживають 333 мА:

Рк - 8 ВА - потужність електромагнітного реле.

Ік = 8/24 = 0,ЗА - споживаний струм,

крім того слід враховувати що ті пари реле "більше і менше", які ввімкнено на імпульсному виході для управління МЕО одночасно обидва бути ввімкненими не можуть. Отже загальний споживаний реле струм буде

Ізаг= Ік* 4=300 * 4= 1200мА

Для живлення цих споживачів потрібно живити блок БУТ-20 (6ОмА) і блок контролера БК-21 (280мА). Отже для живлення першого контролера потрібно:

(1200+60+280)/300=5,1/2=2,6-3 блока БП-21

Для блока БК-2:

Рк = 8 ВА - потужність електромагнітного реле.

Ік = 8/24 = 0,3А - споживаний струм.

Ізаг = Ік*2=З00*2=600мА

Отже для живлення другого контролера потрібно:

(600+60+280)300=3,1/2=1,6=2 блока БП-21

Для блока БК-3:

увімкається 12 сигнальних ламп:

Рзаг = 12* Рса

РСА = 3.5ВА

Рзаг = 12*3.5 = 42ВА

Ізаг = Рзаг /U = 42/24 = 1.75 А-загальний споживаний струм.

Один електричний дзвоник:

Ізаг = Рзаг /U = 7/24 = 0.29 А - загальний споживаний струм.

Отже для живлення третього контролера потрібно:

(1750+290+280)/300 = 5.6/2 = 28 = 3 блока БП-21

Для блока БК-4:

увімкається 7 сигнальних ламп:

Рзаг = 7* Рса

Рса = 3.5ВА

Рзаг = 7*3.5 = 24.5ВА

Ізаг = Рзаг/U = 24.5/24 = 1.02 А - загальний споживаний струм.

Отже для живлення четвертого контролера потрібно:

(1020+280)/З00 = 3.8/2 = 1.9 = 2 блока БП-21

Для функціонування системи автоматизації необхідне її електричне живлення.

Проектування систем електроживлення ведуть на основі завдання на основі проектування функціональної схеми автоматизації (аркуш 1), принципових електричних схем управління, регулювання та сигналізації (аркуш 2).

Принципову електричну схему живлення розробляють у такій послідовності:

§  вибирають джерела живлення;

§  вибираються та розраховуються щити та збірки живлення системи автоматизації;

§  проектується живильна мережа;

§  проектується розподільча система;

§  виконується принципова схема електроживлення.

Джерело живлення повинно забезпечити необхідні електроприймачам напругу і потужність, достатні для того, щоб відхилення напруги не перевищувало значень, при яких порушується нормальна робота електроприймачів:

§  контрольно-вимірювальні та регулюючі прилади +5% номінального;

§  апаратура схеми управління та сигналізації, включаючи реле -5 - +10% номінального.

У щитах і збірках живлення розташовують апаратуру захисту та управління живильної та розподільчої мережі. Їх вибір і розміщення повинні насамперед забезпечити надійність, зручність і безпеку експлуатації системи електроживлення.

Електроприймачі систем автоматизації, які встановлені на щитах управління і в релейних шафах, також і окремо стоячі, як правило, одержують живлення через щити та збірки живлення, котрі розташовані на мінімально можливих відстанях від відповідних електроприймачів.

Проектування живильної мережі системи електроживлення включає в себе вибір напруги, числа фаз і проводів, вибір конфігураційної живильної мережі та вирішення питань резервування; вибір та розміщення апаратів хисту та управління.

Вибір напруги живильної мережі визначається напругою у колах живлення приладів і засобів автоматизації з урахуванням напруг, прийнятих у системі постачання електроенергією об'єкта, що автоматизується. Найбільшого розповсюдження в системах електропостачання промислових підприємств отримали чотирьох провідні мережі трифазного змінного струму напругою 380/220 В з глухим заземленням нейтралі.

Вибір числа фаз і проводів живильної мережі відбувається в залежності від числа фаз і напруги живлення приладів і засобів автоматизації.

Вибір конфігурації живильної мережі відбувається в залежності від категорійності об'єкта, що автоматизується та розташування щитів та збірок живлення відносно джерел живлення.

Апарати захисту та управління в живильних мережах встановлюють в місцях приєднання до джерела живлення і на вводах у щити та збірки живлення систем автоматизації в нормально не заземлених фазних провідниках.

Вибір характеристик апаратів захисту та управління здійснюється з урахуванням основних вимог ПУЭ. Номінальна напруга Uн.а. апаратів захисту управління повинна бути більша або дорівнювати номінальній напрузі мережі Uн.с., а номінальний струм Ін.а., рубильника, пакетного вимикача, тумблера, автомата і плавкої вставки - більше або дорівнює розрахунковому (номінальному) струму кола Ір.

При виборі безінерційних запобіжників необхідно враховувати, що плавка вставка не повинна перегорати при короткочасних збільшеннях струму кола, наприклад при запуску електродвигунів.

При виборі характеристик апаратів захисту для двигунів необхідно враховувати пусковий струм двигуна:

Іпуск = Кд * Ін,

де кд - кратність пускового струму.

Зокрема, при виборі запобіжників для захисту електродвигуна Іп.вст, ≥0,4Іпуск , а при виборі струму уставки електромагнітного розмикаючого автомата

Іуст.ед.магн. ≥ 1,25Іпуск.

У колах управління та сиганалізації плавкі вставки запобіжників вибирають з умови:

Іп.вст. ≥ ∑Ір + 0,1∑Ів ,

де ∑Ір - номінальний сумарний струм, споживаний котушками апаратів, сигнальними лампами та іншими елементами схеми при її одночасній роботі; ∑Ів - найбільший сумарний струм, споживаний при вмиканні котушок апаратів, які вмикаються одночасно.

Для розрахунку струму плавкої вставки використовуємо формулу.

І = Рн/(Uн * соsφ) ,

де Рн - номінальна потужність електроприймача, Вт;

Uн - номінальна напруга електроприймача, В;

cosφ - коефіцієнт потужності.

Для внутрішнього освітлення:

І1 = 25/(220*0,95) = 0,12А → Івст.1 = 0,5А;

Для переносного обладнання:

І2 = 100/(220*0,95) = 0,48А →ІВСТ.2 = 0,5А;

І3= 100/(36*0,95) = 2,9А → Івст.4 = 4А;

Для знижувального трансформатора:

І4 = 100/(220*0,95) = 0,48А → Івст.3 = 0,5А;

Для міліамперметра М-1611:

І5,6,7,8,9,10,11,12,13,14,15,16,17,18,19.20,21,22 = 3,5/(36*0,95) = 0,1А → Івст.6 = 0,1 А;

Для гігрометра АПГ-206:

І23,24,25,26,27 = 800/(220*0,95) = 3,82А → Івст.6 = 4А;

Для тахометра ТЭРА-В:

І28 = 100/(220*0,95) = 0,48А → Івст.6 = 0,5А;

Для блоків живлення БП-21:

І29,30,31,32,33,34,35,36,37 = 18/(220*0,95) = 0,08А → Івст.6 = 0,1А.

Проектне компонування мікропроцесорного контролера

Для контролера Р-130 до документації на замовлення відносять тільки специфікації, тому що таблицю розташування блоків контролера не виконують, оскільки блоки Р-130 та їх розміщення показують у завданнях на виготовлення щитів і пультів. З'єднання блоків контролера реалізується проектно у таблицях з'єднань щитів і пультів.

Специфікація для замовлення контролера Р-130 виконується у вигляді таблиці, причому у формулах блоків Р-130 застосовані такі позначення:

А-конструктивне виконання: П-приладове, Н-настінне.

Б - модель: 01, 21 - регулююча, 02, 22 - логічна, 03, 23 - неперервно-дискретна.

Моделі вибирають в залежності від функціонального призначення контролера.

В - модифікація; вибір модифікації проводиться в залежності від кількості входів-виходів.

Г - версія, на цьому етапі розвитку мікропроцесорних засобів номер версії збігається з номером моделі.

Д - вихідний аналоговий сигнал: 05 - 0...5 мА; 20 - 0(4)...20 мА; 00 -відсутній.

Е - наявність і довжина МБС-20 для приладових мереж: 0 - відсутній; 0,75 або 1,5 - довжина з'єднувача в метрах.

З - кліматичне виконання: без позначення - УХЛ 4.2; 0 - 04. (загальнокліматичне).

К - напруга живлення: 220 - 220 В; 240 - 240 В.

Л - тип датчика ЗДС - джерело електрорушійної сили; ТПП, ПР, ВР, ХА, ХК- тип термопари.

М - початкове значення вхідного сигналу ( зміщення ): 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 40 - число відповідає початковому значенню у мілівольтах.

Н - діапазон зміни вхідного сигналу: 1, 2, 5, 10, 15, 25, 40, 60, 80, 100 - число відповідає діапазону в мілівольтах.

П- початкове значення вхідного сигналу ( зміщення ): 0, 10, 20, 25, 50, 75, 100, 150 - число відповідає початковому значенню в омах.

Р - діапазон зміни вхідного сигналу: 2,5; 5,0; 10; 15; 20; 30; 50; 100; 200 - число відповідає діапазону в омах.

Формули для замовлення блоків матимуть вигляд:

1.  БК-21/А-Б-В-Г-Д-Б-Ж-З

2.  ПН-21

3.  БП-21-К-Е-З

4.  БУТ-20-Л-М-Н-Ж-3

5.  БУС-20-П-Р-Ж-3

6.  БУМ-20-Ж-3

7.  БПР-20-Ж-3

8.  ШЛ-21-В-Е-Ж-3

9.  КБС-20,21,22,23

Враховуючи вищенаведені дані для замовлення першого регулятора формули матимуть вигляд:

1.  БК-21/Н-21-24-22-0,5-1,5-1,5

2.  ПН-21

3.  БП-21-220-0 (3шт.)

4.  БУТ-20-ХК-0-15-1,5

Для замовлення другого регулятора формули матимуть вигляд:

1.  БК-21/Н-21-24-21-0,5-1,5-1,5

2.  ПН-21

3.  БП-21-220-0 (2 шт.)

4.  БУТ-20-ХК-0-15-1,5

Для замовлення третього регулятора формули матимуть вигляд:

1.  БК-21/Н-21-24-22-0,5-1,5-1,5

2.  ПН-21

3.  БП-21-220-0 (Зшт.)

Для замовлення четвертого регулятора формули матимуть вигляд.

1.  БК-21/Н-21-24-22-0,5-1,5-1,5

2.  ПН-21

3.  БП-21-220-0 (2 шт.)

Проектне компонування пункту управління

Основними постами, з яких здійснюється управління технологічними процесами або виробництвом в умовах впровадження автоматизованих систем управління є: місцеві пункти управління, операторські, диспетчерські і центральні диспетчерські пункти. В даному курсовому проекті я обираю операторський пункт управління.

Головна задача управління - отримання максимальної ефективності виробництва. Апаратура, розміщена в операторському пункті призначена для отримання загальних техніко-економічних показників, здійснення оптимізації процесу по економічних критеріях з урахуванням якісних показників, запасів сировини і готової продукції, енергетичних ресурсів і т.д. З допомогою апаратури яка розміщена в операторському пункті вирішуються задачі по оперативному контролю, управлінню і техніко-економічному аналізу процесів в масштабі цеху або виробництва. В операторському пункті, як правило, є мнемосхеми. Оператор підкоряється адміністрації цеха та заводу. Розпорядження, даються оператором, є обов'язковими до виконання для всіх працівників цеха. До головних функцій оператора відносять: забезпечення виконання планових завдань, здійснення оперативного управління технологічним процесом згідно з інструкціями та завданнями, дистанційне управління різними механізмами і оперативний аналіз ходу виробництва.

Робота оператора пов'язана з необхідністю сприймання великої кількості інформації, так як на щитах і пультах управління концентруються десятки контрольно-вимірювальних приладів та іншої апаратури Така робота має ряд специфічних особливостей, які повинні бути враховані при проектуванні щитів та пультів.

Розрахунок техніко-економічних показників ( ККД, питомі витрати матеріалів і електроенергії, виробнича продуктивність і т. і.) нерідко здійснюється за участю оператора на основі відповідної інформації. Для запечення оперативного управління і своєчасного внесення поправок в хід технологічного процесу необхідно знати миттєві значення названих показників або їх значення за короткий проміжок часу, тому для їх визчення використовують засоби обчислювальної техніки.

Представляємо на пункті управління інформація повинна бути організована так,які щоб оператор в будь-який момент часу міг знайти всі зміни які відбуваються в об'єкті. Крім того, інформація яка надходить знову повинна бути відмінною від сигналів, отриманих раніше. Аналізуючи отриману інформацію, оператор контролює правильність управляючих збурень на об'єкт, або здійснює такі збурення сам.

Складними і відповідальними є також функції оператора по знаходженню недоліків та поломок в роботі технологічного обладнання, так як в цьому випадку він повинен мати всю інформацію відносно причин несправності, місць їх виникнення, різних наслідків і прийняти в короткий строк єдине правильне рішення: зупинити агрегат, вимкнути резервне обладнання...

Отже, проектування пунктів управління - дуже складна і відповідальна задача. Правильно вибрана кількість пунктів управління та їх характер забезпечить максимальний ефект оперативного управління складними виробництвами на основі оптимального ведення технологічного процесу. В залежності від особливостей апаратурного оснащення пункти управління поділяють на щитові, без щитові та комбіновані. В даному курсовому проекті я розглядаю щитовий пункт управління. На щитових пунктах управління інформація подається з допомогою приладів і мнемосхем. Щити управління призначені для розташування приладів і апаратури автоматичного контролю, управління і сигналізації на пунктах управління і складається із корпуса або каркаса з встановленими приладами, апаратурою, електричною і трубною проводками, підготовленими до підключення зовнішніх ланцюгів.

У системах автоматизації застосовують повно і малогабаритні щити і пульти і допоміжні елементи (панелі і вставки). Конструкції щитів і пультів регламентуються галузевим стандартом ОСТ36. 13-76, який передбачає випуск щитів шафових, панельних з каркасом і штативів одно, двох і трьох секційних. Щити і штативи виготовляють у двох виконаннях: І - з двома панелями, II - з трьома панелями.

Умовні позначення марок щитів включають найменування виробу, число секцій вказівки про відкриті (закриті) бокові стінки, номер виконання, типорозмір, кліматичне виконання, ступінь захисту, номер (позначення) основного документу.

Стандартні щити систем автоматизації призначені для установки у закритих приміщеннях (виробничих цехах або спеціальних щитових) при відсутності у навколишньому повітрі агресивних газів, пара, токопровідного пилу, в місцях, на які не розповсюджується дія магнітних полів, електро установок і вібрації. Температура навколишнього повітря у цих приміщеннях може змінюватися від -30 до +50 °С, а відносна вологість складає не більше 80%.

Щит панельний каркасний має три розміри: висоту (2200мм), глибину (600мм) та ширину (600,800,1000мм).

При розробці системи автоматизації згідно ОСТ36.13-76 вибираємо щит шафовий з задніми дверима типу ЩШ-ЗД-2- 1(1000+1000)-УХЛ4-ІР30 ОСТ36.13-76.

Компоновка приладів і апаратури на фасадних панелях щитів по ОСТ36.13-76, ОСТ36.ЕД.1.13-79 повинна бути виконана з урахуванням розмірів і конфігурації монтажних зон.

Розміри приладів і апаратури, встановлених на фасадних панелях, а також відстань поміж ними потрібно визначати по РТМ25-91-72.

Для щитів і пультів по ОСТ36.13-76 термін "край панелі" слід розуміти як лінію обмежуючу монтажну зону.

Взаємне розташування приладів і апаратури повинно відповідати вимогам РМ4-51-73 "Щити і пульти управління. Принципи компоновки". Регулюючі прилади повинні бути розміщенні на висоті 1100-1700 мм, а оперативна апаратура контролю і управління - на висоті 800-1600мм. Мнемосхема розміщується на щиті на висоті 1700-2200мм.

Фасадна панель щита виконання II складається із трьох функціональних полів. На поле 3 розташовується мнемосхема об'єкту. На полі 2 розташовуються самописці прилади, а також органи управління. Поле 1 являється декоративним: воно не призначене для установки приладів і апаратури.

Апаратуру слід встановлювати на деталях по типовим монтажним кресленням збірника 40 '"Установка апаратури всередині щитів по ОСТ36.13-76 і ОСТ36.ЕД113-79". Всередині щитів розміщують допоміжну неоперативну апаратуру ( реле, трансформатори, джерела живлення, панелі з вимикачами і запобіжниками і т. д) , а також регулятори і функціональні блоки.

Електричні проводки слід виконувати установочними і монтажними проводами, вибраними по ОСТ36.13-76.

 

Таблиця з’єднань і підмикань проводок

З’єднання проводок
Провідник Звідки йде Куди надходить Дані проводу Примітка
Передня стінка секції №1
451 SB2:1 XT2:40 ПВ1х1
452 SB2:2 SB3:1 ПВ1х1
452 SB3:1 SB2:2 ПВ1х1
453 SB3:2 XT2:41 ПВ1х1
457 SB5:1 XT2:42 ПВ1х1
458 SB5:2 SB6:1 ПВ1х1
458 SB6:1 SB5:2 ПВ1х1
459 SB6:2 XT2:43 ПВ1х1
463 SB8:1 XT2:44 ПВ1х1
464 SB8:2 SB9:1 ПВ1х1
464 SB9:1 SB8:2 ПВ1х1
465 SB9:2 XT2:45 ПВ1х1
469 SB11:1 XT2:46 ПВ1х1
470 SB11:2 SB12:1 ПВ1х1
470 SB12:1 SB11:2 ПВ1х1
471 SB12:2 XT2:47 ПВ1х1
475 SB14:1 XT2:48 ПВ1х1
476 SB14:2 SB15:1 ПВ1х1
476 SB15:1 SB14:2 ПВ1х1
477 SB15:2 XT2:49 ПВ1х1
104 7в:1 ХТ2:1 ПВ1х1
105 7в:2 1БК21(Х2):1 ПВ1х1
107 8в:1 ХТ2:2 ПВ1х1
108 8в:2 1БК21(Х2):3 ПВ1х1
111 18б:1 18а:2 ПВ1х1
112 18б:2 1БК21(Х2):5 ПВ1х1
113 21б:1 21а:2 ПВ1х1
115 21б:2 1БК21(Х2):7 ПВ1х1
124 7г:20 ХТ2:20 ПВ1х1
125 7г:32 ХТ2:21 ПВ1х1
126 7г:25 ХТ2:22 ПВ1х1
128 7г:27 ХТ2:23 ПВ1х1
130 7д:3 ХТ2:5 ПВ1х1
131 7д:4 ХТ2:6 ПВ1х1
132 7д:5 ХТ2:7 ПВ1х1
137 8г:20 ХТ2:24 ПВ1х1
138 8г:32 ХТ2:25 ПВ1х1
Провідник Звідки йде Куди надходить Дані проводу Примітка
139 8г:25 XT2:25 ПВ1х1
140 8г:26 XT2:26 ПВ1х1
141 8г:27 XT2:27 ПВ1х1
143 8д:3 XT2:28 ПВ1х1
144 8д:4 XT2:29 ПВ1х1
145 8д:5 XT2:10 ПВ1х1
150 18в:20 XT2:29 ПВ1х1
151 18в:32 XT2:30 ПВ1х1
152 18в:25 XT2:31 ПВ1х1
153 18в:26 XT2:32 ПВ1х1
154 18в:27 XT2:33 ПВ1х1
156 18г:3 XT2:11 ПВ1х1
157 18г:4 XT2:12 ПВ1х1
158 18г:5 XT2:13 ПВ1х1
163 21в:20 XT2:34 ПВ1х1
164 21в:32 XT2:35 ПВ1х1
165 21в:25 XT2:36 ПВ1х1
166 21в:26 XT2:37 ПВ1х1
167 21в:27 XT2:38 ПВ1х1
169 21г:3 XT2:14 ПВ1х1
170 21г:4 XT2:15 ПВ1х1
171 21г:5 XT2:16 ПВ1х1
180 2в:1 XT2:2 ПВ1х1
181 2в:1 2БК21(Х2):1 ПВ1х1
183 3в:1 XT2:1 ПВ1х1
184 3в:2 2БК21(Х2):3 ПВ1х1
207 2г:20 XT2:50 ПВ1х1
208 2г: 32 XT2:51 ПВ1х1
209 2г:25 XT2:52 ПВ1х1
210 2г:26 XT2:53 ПВ1х1
211 2г:27 XT2:54 ПВ1х1
213 2д:3 XT2:17 ПВ1х1
214 2д:4 XT2:18 ПВ1х1
215 2д:5 XT2:19 ПВ1х1
457 HL11:1 XT2:55 ПВ1х1
466 HL13:1 XT2:56 ПВ1х1
475 HL15:1 XT2:57 ПВ1х1
484 HL17:1 XT2:58 ПВ1х1
493 HL19:1 XT2:59 ПВ1х1
N802 7д:2 XT2:4 ПВ1х1
N802 8д:2 XT2:4 ПВ1х1
N802 18г:2 XT2:4 ПВ1х1
Провідник Звідки йде Куди надходить Дані проводу Примітка
N802 21г:2 ХТ2:4 ПВ1х1
N802 2д:2 ХТ2:4 ПВ1х1
N802 7г:1 7д:2 ПВ1х1
N802 8г:1 8д:2 ПВ1х1
N802 18в:1 18г:2 ПВ1х1
N802 21в:1 21г:2 ПВ1х1
N802 2г:1 2д:2 ПВ1х1
816 7в:4 FU21:2 ПВ1х1
817 7в:3 TV2:4 ПВ1х1
817 8в:3 7в:3 ПВ1х1
817 18б:3 8в:3 ПВ1х1
817 21б:3 18б:3 ПВ1х1
817 2в:3 21б:3 ПВ1х1
818 8в:4 FU22:2 ПВ1х1
819 18б:4 FU23:2 ПВ1х1
820 21б:4 FU24:2 ПВ1х1
821 2в:4 FU25:2 ПВ1х1
822 3в:4 FU26:2 ПВ1х1
826 17б:4 FU31:2 ПВ1х1
827 7д:1 ХТ2:3 ПВ1х1
827 8д:1 ХТ2:3 ПВ1х1
827 18г:1 ХТ2:3 ПВ1х1
827 21г:1 ХТ2:3 ПВ1х1
827 2д:1 ХТ2:3 ПВ1х1
830 19б:4 FU32:2 ПВ1х1
831 20б:4 FU33:2 ПВ1х1
859 7г:18 ХТ2:60 ПВ1х1
859 8г:18 7г:18 ПВ1х1
859 18в:18 8г:18 ПВ1х1
859 21в:18 18в:18 ПВ1х1
868 3г:18 ХТ2:61 ПВ1х1
Передня стінка секції №2
186 15б:1 15а:2 ПВ1х1
187 15б:2 2БК21(Х2):5 ПВ1х1
189 15г:1 15в:2 ПВ1х1
190 15г:2 2БК21(Х2):7 ПВ1х1
192 11б:1 11а:2 ПВ1х1
193 11б:2 2БК21(Х2):9 ПВ1х1
220 15д:20 ХТ3:21 ПВ1х1
221 15д:32 ХТ3:22 ПВ1х1
222 15д:25 ХТ3:23 ПВ1х1
223 15д:26 ХТ3:24 ПВ1х1
Провідник Звідки йде Куди надходить Дані проводу Примітка
224 15д:27 ХТ3:25 ПВ1х1
226 15е:3 ХТ3:3 ПВ1х1
227 15е:4 ХТ3:4 ПВ1х1
228 15е:5 ХТ3:5 ПВ1х1
233 16д:20 ХТ3:26 ПВ1х1
234 16д:32 ХТ3:27 ПВ1х1
235 16д:25 ХТ3:28 ПВ1х1
236 16д:26 ХТ3:29 ПВ1х1
237 16д:27 ХТ3:30 ПВ1х1
239 16е:3 ХТ3:6 ПВ1х1
240 16е:4 ХТ3:7 ПВ1х1
241 16е:5 ХТ3:8 ПВ1х1
260 24в:20 ХТ3:31 ПВ1х1
261 24в:32 ХТ3:32 ПВ1х1
262 24в:25 ХТ3:33 ПВ1х1
263 24в:26 ХТ3:34 ПВ1х1
264 24в:27 ХТ3:35 ПВ1х1
266 24г:3 ХТ3:9 ПВ1х1
273 24г:4 ХТ3:10 ПВ1х1
274 24г:5 ХТ3:11 ПВ1х1
279 22в:20 ХТ3:36 ПВ1х1
274 22в:32 ХТ3:37 ПВ1х1
275 22в:25 ХТ3:38 ПВ1х1
282 22в:26 ХТ3:39 ПВ1х1
277 22в:27 ХТ3:40 ПВ1х1
279 22г:3 ХТ3:12 ПВ1х1
280 22г:4 ХТ3:13 ПВ1х1
281 22г:5 ХТ3:14 ПВ1х1
300 23в:20 ХТ3:41 ПВ1х1
301 23в:32 ХТ3:42 ПВ1х1
302 23в:25 ХТ3:43 ПВ1х1
303 23в:26 ХТ3:44 ПВ1х1
304 23в:27 ХТ3:45 ПВ1х1
306 23г:3 ХТ3:15 ПВ1х1
307 23г:4 ХТ3:16 ПВ1х1
308 23г:5 ХТ3:17 ПВ1х1
246 9а:2 3БК21(Х2):1 ПВ1х1
248 11а:2 3БК21(Х2):3 ПВ1х1
250 13а:2 3БК21(Х2):5 ПВ1х1
251 22а:2 3БК21(Х2):7 ПВ1х1
254 24а:22 3БК21(Х2):9 ПВ1х1
401 HL1:1 3БК21(Х2):6 ПВ1х1
Провідник Звідки йде Куди надходить Дані проводу Примітка
402 HL2:1 3БК21(Х2):7 ПВ1х1
403 HL3:1 3БК21(Х2):8 ПВ1х1
404 HL4:1 3БК21(Х2):9 ПВ1х1
405 HL5:1 3БК21(Х2):10 ПВ1х1
413 HА:1 3БК21(Х2):11 ПВ1х1
А801 SF1:3 SA1:1 ПВ1х1
А801 SF1:3 SA1:2 ПВ1х1
N801 SF1:4 SA2:1 ПВ1х1
N801 SF1:4 SA2:2 ПВ1х1
N802 18в:1 18г:2 ПВ1х1
N802 15д:1 15е:2 ПВ1х1
N802 16д:1 16е:2 ПВ1х1
N802 22в:1 22г:2 ПВ1х1
N802 24в:1 24г:2 ПВ1х1
N802 23в:1 23г:2 ПВ1х1
803 SА1:3 FU17:1 ПВ1х1
804 FU17:1 EL1:1 ПВ1х1
805 SА1:4 EL1:2 ПВ1х1
823 15б:4 FU27:2 ПВ1х1
824 15г:4 FU28:2 ПВ1х1
825 11б:4 FU30:2 ПВ1х1
832 16б:4 FU34:2 ПВ1х1
833 16г:4 FU35:2 ПВ1х1
834 12б:4 FU36:2 ПВ1х1
835 13б:4 FU37:2 ПВ1х1
836 14б:4 FU38:2 ПВ1х1
837 24б:4 FU39:2 ПВ1х1
873 HL1:2 HA1:2 ПВ1х1
873 HL3:2 HL1:2 ПВ1х1
873 HL5:2 HL3:2 ПВ1х1
873 HL7:2 HL5:2 ПВ1х1
873 HL10:2 HL7:2 ПВ1х1
873 HA1:2 HL10:2 ПВ1х1
878 22в:18 XT3:51 ПВ1х1
878 24в:18 XT3:52 ПВ1х1
878 23в:18 XT3:53 ПВ1х1
Бокова стінка секції №2
806 FU18:1 SA2:3 ПВ1х1
807 TV1:1 FU18:2 ПВ1х1
808 TV1:2 SA2:4 ПВ1х1
809 TV1:3 FU19:1 ПВ1х1
810 FU19:2 XT1:1 ПВ1х1
Провідник Звідки йде Куди надходить Дані проводу Примітка
811 TV1:4 FU20:1 ПВ1х1
812 SA3:3 FU20:1 ПВ1х1
813 FU20:2 TV2:2 ПВ1х1
814 SA3:4 TV2:1 ПВ1х1
815 TV2:3 FU21:1 ПВ1х1
815 TV2:3 FU22:1 ПВ1х1
815 TV2:3 FU23:1 ПВ1х1
815 TV2:3 FU24:1 ПВ1х1
815 TV2:3 FU25:1 ПВ1х1
815 TV2:3 FU26:1 ПВ1х1
815 TV2:3 FU27:1 ПВ1х1
815 TV2:3 FU28:1 ПВ1х1
815 TV2:3 FU29:1 ПВ1х1
815 TV2:3 FU30:1 ПВ1х1
815 TV2:3 FU31:1 ПВ1х1
815 TV2:3 FU32:1 ПВ1х1
815 TV2:3 FU33:1 ПВ1х1
815 TV2:3 FU34:1 ПВ1х1
815 TV2:3 FU35:1 ПВ1х1
815 TV2:3 FU36:1 ПВ1х1
815 TV2:3 FU37:1 ПВ1х1
815 TV2:3 FU38:1 ПВ1х1
815 TV2:3 FU39:1 ПВ1х1
815 TV2:3 FU40:1 ПВ1х1
A801 SA3:1 SF1:3 ПВ1х1
A801 SA3:2 SF1:4 ПВ1х1
Зовнішня проводка
451 XT2:40 КМ1:3 ПВ1х1
453 XT2:41 КМ1:1 ПВ1х1
457 XT2:42 КМ2:3 ПВ1х1
459 XT2:43 КМ2:1 ПВ1х1
563 XT2:44 КМ3:3 ПВ1х1
465 XT2:45 КМ3:1 ПВ1х1
469 XT2:46 КМ4:3 ПВ1х1
471 XT2:47 КМ4:1 ПВ1х1
475 XT2:48 КМ5:3 ПВ1х1
477 XT2:49 КМ5:1 ПВ1х1
124 XT2:20 KV1:1 ПВ1х1
137 XT2:24 KV3:1 ПВ1х1
150 XT2:29 KV5:1 ПВ1х1
163 XT2:34 KV7:1 ПВ1х1
200 XT2:50 KV9:1 ПВ1х1
Провідник Звідки йде Куди надходить Дані проводу Примітка
125 XT2:21 1M:5 ПВ1х1
126 XT2:22 Rд1:1 ПВ1х1
127 XT2:23 1М:10 ПВ1х1
128 XT2:24 1М:20 ПВ1х1
130 XT2:5 1М:16 ПВ1х1
131 XT2:6 1М:14 ПВ1х1
132 XT2:7 1М:13 ПВ1х1
138 XT2:25 2М:5 ПВ1х1
139 XT2:26 Rд2:1 ПВ1х1
140 XT2:27 2М:10 ПВ1х1
141 XT2:28 2М:20 ПВ1х1
143 XT2:8 2М:16 ПВ1х1
144 XT2:9 2М:14 ПВ1х1
145 XT2:10 2М:13 ПВ1х1
151 XT2:30 3М:5 ПВ1х1
152 XT2:31 Rд3:1 ПВ1х1
153 XT2:32 3М:10 ПВ1х1
154 XT2:33 3М:20 ПВ1х1
156 XT2:11 3М:16 ПВ1х1
157 XT2:12 3М:14 ПВ1х1
158 XT2:13 3М:13 ПВ1х1
164 XT2:35 4М:5 ПВ1х1
165 XT2:36 Rд4:1 ПВ1х1
166 XT2:37 4М:10 ПВ1х1
167 XT2:38 4М:20 ПВ1х1
169 XT2:14 4М:16 ПВ1х1
170 XT2:15 4М:14 ПВ1х1
171 XT2:16 4М:13 ПВ1х1
201 XT2:51 5М:5 ПВ1х1
202 XT2:52 Rд5:1 ПВ1х1
203 XT2:53 5М:10 ПВ1х1
204 XT2:54 5М:20 ПВ1х1
205 XT2:17 5М:16 ПВ1х1
206 XT2:18 5М:14 ПВ1х1
207 XT2:19 5М:13 ПВ1х1
213 XT3:21 KV11:1 ПВ1х1
214 XT3:22 6М:5 ПВ1х1
215 XT3:23 Rд6:1 ПВ1х1
216 XT3:24 6М:10 ПВ1х1
217 XT3:25 6М:20 ПВ1х1
219 XT3:3 6М:16 ПВ1х1
220 XT3:4 6М:14 ПВ1х1
Провідник Звідки йде Куди надходить Дані проводу Примітка
221 XT3:5 6М:13 ПВ1х1
226 XT3:26 7М:5 ПВ1х1
227 XT3:27 Rд7:1 ПВ1х1
228 XT3:28 7М:10 ПВ1х1
229 XT3:29 7М:20 ПВ1х1
231 XT3:6 7М:16 ПВ1х1
232 XT3:7 7М:14 ПВ1х1
233 XT3:8 7М:13 ПВ1х1
254 XT3:31 KV15:1 ПВ1х1
255 XT3:32 8М:5 ПВ1х1
250 XT3:33 Rд8:1 ПВ1х1
251 XT3:34 8М:10 ПВ1х1
252 XT3:35 8М:20 ПВ1х1
260 XT3:9 8М:16 ПВ1х1
261 XT3:10 8М:14 ПВ1х1
262 XT3:11 8М:13 ПВ1х1
267 XT3:36 KV17:1 ПВ1х1
268 XT3:37 9М:5 ПВ1х1
269 XT3:38 Rд9:1 ПВ1х1
270 XT3:39 9М:10 ПВ1х1
271 XT3:40 9М:20 ПВ1х1
273 XT3:12 9М:16 ПВ1х1
274 XT3:13 9М:14 ПВ1х1
275 XT3:14 9М:13 ПВ1х1
280 XT3:41 KV19:1 ПВ1х1
281 XT3:42 10М:5 ПВ1х1
282 XT3:43 Rд10:1 ПВ1х1
283 XT3:44 10М:10 ПВ1х1
284 XT3:45 10М:20 ПВ1х1
286 XT3:15 10М:16 ПВ1х1
287 XT3:16 10М:14 ПВ1х1
288 XT3:17 10М:13 ПВ1х1
407 XT2:61 KM1:4 ПВ1х1
408 XT2:55 KM1:2 ПВ1х1
409 XT2:62 KM2:4 ПВ1х1
410 XT2:56 KM2:2 ПВ1х1
411 XT2:63 KM3:4 ПВ1х1
412 XT2:57 KM3:2 ПВ1х1
413 XT2:64 KM4:4 ПВ1х1
414 XT2:58 KM4:2 ПВ1х1
415 XT2:65 KM5:4 ПВ1х1
416 XT2:59 KM5:2 ПВ1х1

 


Література

1. Трегуб В. Г. "Автоматизация периодических процессов в пищевой промьішленности''. - К: Техника, 1982. - 160 с.

2. Остапчук Н.В. "Основы математического моделирования процессов пищевых производств". - М 1991

3.Трегуб В.Г., Ладанюк А. П.., ГІлужников Л.Н. "Проектирование, монтаж и эксплуатация систем автоматизации в пищевой промышленности". Учебник для вузов. - М: Агропромиздат, 1991. -352с.

4."Проектирование систем автоматизации технологических процессов". Справочное пособие под редакцией А.С. Клюева - 2е изд., перераб. и доп. - Москва Энергоатомиздат, 1990.

5.Трегуб В.Т. "Проектирование, монтаж и експлуатация систем автоматизации": Учеб. пособие. -К: УМКВО, 1990. - 80с.

6.Емельянов А.М., Капник О.В. "Проектирование систем автоматизации технологических процессов": Справочное пособие. - 3-е изд. перераб. И доп - М: Енергоиздат, 1983. - 400 с.

7.Трегуб В. Г., Ельперін I. В. Карнаух А.О. "Методичні вказівки до проектування принципових схем мікропроцесорної системи автоматизації при виконанні курсових та дипломного проекту". К 1994.

8.Трегуб В.Г. "Методичні вказівки до проектування пунктів управління мікропроцесорних систем автоматизації в курсовому й дипломному проектуванні для студентів денної та заочної форми навчання". Київ 1994.

9.Чистяков В.С. Краткий справочник по теплотехническим измерениям. - М: Энергоатомиздат, 1990. - 296 с.

10.Петров И.К, Соломенко М.М., Царьков В.А. "Приборы.и средства автоматизации для пищевой промьгшленности". - М: Легкая и пищевая промышленность.

11.Правила устройства електроустановок (ПУЭ). М6 Енергоиздат, 1985.-640 с.


Информация о работе «Проектування систем автоматизації»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 56171
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
27450
0
15

... закінчується і розробляється ескізний проект системи регулювання. 3.РОЗРОБКА АСК НЕПЕРЕРВНИМИ ТЕХНОЛОГІЧНИМИ ПРОЦЕСАМИ Автоматизування змішувальної установки на основі одноконтурних систем регулювання 3.1 Принцип роботи змішувальної установки Змішувальна установка (рис. 2) призначена для неперервного змішування двох електропровідних рідин з різними концентраціями (процес запуску змі ...

Скачать
79093
54
9

... кта та алгоритму його функціонування, або алгоритму процесу, а також уявлення опису на різноманітних мовах здійснюється взаємодією людини і ЕОМ. Система автоматизованого проектування - це комплеск засобів автоматизації проектування, взаємозв’язаних з необхідними підрозділами проектної організації або колективом спеціалістів (користувачем системи), які виконують автоматизоване проектування. САПР ...

Скачать
117936
0
10

... технологи НДІ постійно працюють з технологами КБ (більш детально питання розробки будуть розглянуті нижче). Технологи КБ повинні знати основи економіки даного виробництва і ціноутворення вироби для того, щоб розроблювальний технологічний процес дозволяв випускати продукцію більш низькою собівартістю, ніж аналоги. Розроблена технологічна документація з КБ надходить до служби головного технолога, ...

Скачать
147788
20
31

... Вологість дошки в точці 2 Аналоговий % 5…100 – 4. Функціональна структура системи управління   Функціональна схема автоматизації є основним документом, який визначає функціонально-блокову організацію структури керування. Для процесу вакуумної сушки деревини функціональна схема приведена в графічній частині проекту (лист 6). Система складається з лісосушильної камери, вентиляторів, насос ...

0 комментариев


Наверх