Расчет характеристик и переходных процессов в электрических цепях

7587
знаков
0
таблиц
20
изображений

МИНИСТЕРСТВО ВЫСШЕГО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ХТУРЭ Кафедра ОРТ

РАСЧЕТНО – ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

по курсу "Основы теории цепей"

Тема: Расчет характеристик и переходных процессов в электрических цепях

Выполнил:

студент группы ВEЗ-09-3

Моисеев В.П.

Проверил:

Долбин А.А.

Харьков 2009
СОДЕРЖАНИЕ

Задание

Введение

1.  Определение характеристического сопротивления Z(w)

2.  Определение классическим методом переходной характеристики  и построение ее графика

3.  Нахождение импульсной характеристики цепи  с использованием ее связи с , построение графика

4.  Определение комплексного коэффициента передачи цепи , построение графиков АЧХ и ФЧХ

5.  Нахождение передаточной функции цепи  и установление ее связей с  и

6.  Расчет отклика цепи на произвольное, построение графика отклика

Заключение Список использованных источников

Приложение А


ЗАДАНИЕ

Схема и параметры цепи:

R1 =2 Ом; R2 = 800 Ом;

L = 2,3 мкГн;

C = 338 пФ.

Параметры воздействия в виде импульса, показанного на рисунке ниже:

U1 = -16B; U2 =48B.

t1 = 14мкс; t2 = 28мкс.

Временная диаграмма импульсного воздействия :


ВВЕДЕНИЕ

Основная цель данной работы – закрепление и углубление знаний по разделам курса и формирование практических навыков применения методов анализа теории цепей, имеющих большое значение для изучения последующих дисциплин и для специальности радиоинженера в целом. Значение комплексного коэффициента передачи цепи, временных характеристик линейных цепей и методов анализа переходных процессов в линейных цепях, необходимо для изучения основных методов расчета радиотехнических устройств (спектрального, временного и операторного). Овладение этими методами позволяет выбирать в каждом конкретном случае наиболее рациональный, вытекающий из принципа работы устройства метод, а решение одной и той же задачи различными методами предохраняет от ошибок.


1. ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИЧЕСКОГО СОПРОТИВЛЕНИЯ Z(w)

Для определения характеристического сопротивления нужно составить уравнение:

Приобразуем его:

,

.

Найдём модуль характеристического сопротивления ôZ(w)ô:

.

Подставив числовые значения, получим:

График зависимости модуля характеристического сопротивления от частоты показан на рисунке 1.1. Результаты расчетов представлены в дополнении А.

Рисунок 1.1 – График зависимости модуля характеристического сопротивления от частоты

Рассмотрим поближе тот промежуток зависимости модуля характеристического сопротивления от частоты, где он приближается к минимуму (рисунок 1.2).

Рисунок 1.2 – График зависимости модуля характеристического сопротивления от частоты (точка минимума)

Как видно из результатов расчетов, представленных в дополнении А, минимальное значение модуля характеристического сопротивления находится на частоте 3,58 ×107рад/с.


Найдём фазочастотную характеристику. Она равняется arctg от соотношения нериальной части к реальной характеристического сопротивления:

Подставив числовые значения, получим:

График ФЧХ представлен на рисунке 1.3.

Рисунок 1.3 – График фазо - частотной характеристики

2. ОПРЕДЕЛЕНИЕ КЛАССИЧЕСКИМ МЕТОДОМ ПЕРЕХОДНОЙ ХАРАКТЕРИСТИКИ , ПОСТРОЕНИЕ ГРАФИКА

Поскольку схема содержит два накопительных элемента (C и L) в различных ветвях, данная цепь является цепью второго порядка. В ней возможны либо апериодический, либо колебательный режим. Для выяснения этого составим характеристическое уравнение и определим его корни.

Для определения корней характеристического уравнения можно воспользоваться следующей методикой – записать входное сопротивление в операторной форме  и приравнять его к нулю. В данной задаче получаем:

 (1.1)

откуда, находим корни этого уравнения.

Поскольку они комплексные, то:

 (1.2)

Цепь имеет колебательный характер, поэтому свободную составляющую решения можно определять в виде затухающего колебания:

, (1.3)

где  и q - постоянные интегрирования.

В данном случае , так как ток в принужденном режиме через ёмкость С не пойдёт.

Итак,

Чтобы определить постоянные интегрирования нужно составить два уравнения для начальных значений  и .

Начальное значение , т.к. по закону коммутации ток в начальный момент времени через индуктивность L равен току до включения.

Для нахождения произвольной переходной характеристики продифференцируем по времени по времени .

Из курса ОРЭ известно, что напряжение на ёмкости равно:

, откуда ,

, ,

.

Учтя всё это можно составить систему уравнений:

Решение системы уравнений и подстановка данных приводит к значению:

Переходная характеристика после подстановки значений имеет вид:


или

Её график изображен на рисунке 2.3. Расчетные данные находятся в приложении А.

Рисунок 2.3 – График зависимости переходной характеристики

3. НАХОЖДЕНИЕ ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКИ ЦЕПИ  С ИСПОЛЬЗОВАНИЕМ ЕЕ СВЯЗИ С , ПОСТРОЕНИЕ ГРАФИКА

Импульсная характеристика вычисляется с помощью зависимости от  по формуле:

 (3.1)

 (3.2)


В импульсной характеристике отсутствует дельта функция, поскольку .

После подстановки значений:

получим

График импульсной функции изображен на рисунке 3.1. Расчетные данные находятся в приложении А.

Рис.3.1 – График зависимости импульсной функции

4. ОПРЕДЕЛЕНИЕ КОМПЛЕКСНОГО КОЭФФИЦИЕНТА ПЕРЕДАЧИ ЦЕПИ , ПОСТРОЕНИЕ ГРАФИКОВ АЧХ И ФЧХ

Комплексный коэффициент передачи может быть представлен в показательной форме записи:


, (4.1)

где  - модуль комплексного коэффициента передачи;

 - аргумент комплексного коэффициента передачи.

Модель комплексного коэффициента передачи представляет собой АЧХ цепи, а аргумент - ФЧХ цепи. Его можно найти из соотношения:

Напряжение на резисторе R2 равно напряжению на индуктивности L.

Выходя из этого, можно записать:

Комплексный коэффициент передачи при этом:

Выделим мнимую часть числа и найдём модуль (АЧХ):


Подставим значения в выведенные формулы и получим:

Аргумент комплексного коэффициента передачи (аргумент - ФЧХ цепи):

Графики АЧХ , ФЧХ представлены на рисунках 4.1и 4.2 соответственно

Рисунок 4.1 -АЧХ


Рисунок 4.2 – ФЧХ

5. НАХОЖДЕНИЕПЕРЕДАТОЧНОЙ ФУНКЦИИ  И УСТАНОВЛЕНИЕ ЕЕ СВЯЗИ С  И

Формально выражения для комплексного коэффициента передачи  и передаточной функцией  отличаются только переменной для идля .

Произведём замену:

Подставив значение


получим:

Умножим и поделим, прибавим и отнимем комплексно сопряженные числа:

Сведём по формуле квадратов:

Подставив числовые значения и сделав еще некоторые преобразования получим:


Зная, что

запишем импульсную характеристику:

Зная, что

получим переходную характеристику:


Полученные выражения для  исовпадают с определенными в п.2 и п.3.

6. РАСЧЕТ ОТКЛИКА ЦЕПИ НА ПРОИЗВОЛЬНОЕ, ПОСТРОЕНИЕ ГРАФИКА ОТКЛИКА

Опишем входной сигнал (напряжение) с помощью простой функции:

Учитывая то, что вид реакции цепи - iL запишем на каждом временном интервале функцию тока через напряжение:


ЗАКЛЮЧЕНИЕ В ходе выполнения курсовой работы были изучены классический и операторный методы нахождения временных характеристик. Классический метод оказался более прост, так как требовал меньше математических выкладок, для определения  и . Временные характеристики, найденные этими двумя методами совпали. Был применен комплексный метод для нахождения частотных характеристик цепи.

Также были приобретены практические навыки применения интегралов наложения для расчета переходных процессов и прохождения простейших сигналов через цепи.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1.  Основы теории цепей: Методические указания к курсовой работе для студентов – заочников специальности 23.01 "Радиотехника"/ Сост. Коваль Ю.А., Праги О.В. – Харьков: ХИРЭ, 1991. – 63 с.

2.  Зернов Н.В., Карпов В.Г. "Теория электрических цепей". Издание 2-е, перераб. и доп., Л.,"Энергия",1987.


Приложение А

Результаты расчетов частотных характеристик


Информация о работе «Расчет характеристик и переходных процессов в электрических цепях»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 7587
Количество таблиц: 0
Количество изображений: 20

Похожие работы

Скачать
13012
4
16

... пример анализа переходных процессов операторным методом, основанный на теоретических знаниях. В результате чего произведено более глубокое и эффективное изучение материала по теме: «Анализ переходных процессов в электрических цепях», а также освоение новых программ и приложений, требуемых при построении схем, графиков и расчёте формул. 1. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ   1.1 ...

Скачать
9276
0
3

... метода применимы только для линейных электрических цепей, поскольку в их основе лежит метод наложения (суперпозиции). Сущность классического метода анализа переходных колебаний в электрических цепях Переходные процессы в электрических цепях описываются уравнениями, составленными на основании законов Кирхгофа для мгновенных значений напряжений и токов. Эти уравнения для различных цепей после ...

Скачать
34647
1
16

... к расчету. ¨          В оглавлении указываются названия разделов и номера страниц, соответствующие началам разделов. ¨          Во введении кратко рассматривается общенаучное значение теории электрических цепей (ТЭЦ) для изучения электромагнитных явлений и их практического приложения. Описываются связи ТЭЦ с соответствующими разделами математики и физики, а также с различными ...

Скачать
21327
20
21

... контура в той последовательности, в которой производим обход контура, прикладывая сопротивления друг к другу, по оси ординат - потенциалы точек с учетом их знака. рис.1.7 1.2 Расчет нелинейных электрических цепей постоянного тока Построить входную вольтамперную характеристику схемы (рис.1.8) Определить токи во всех ветвях схемы и напряжения на отдельных элементах, используя полученные ...

0 комментариев


Наверх