Контрольное задание №1
Исходные данные (Вариант №4):
Еп, В | 9 |
I0K, мА | 12 |
U0КЭ, В | 4 |
EГ, мВ | 50 |
RГ, кОм | 0,6 |
fН, Гц | 120 |
fВ, кГц | 10 |
M, дБ | 1 |
tСМИН, оC | 0 |
tСМАКС, оC | 35 |
Изобразим полную принципиальную схему предварительного каскада элементами связи с источником сигнала и последующим каскадом.
Выберем тип транзистора исходя из заданного режима его работы и частоты верхнего среза усилителя fВ
Еп=9В; I0K=12 мА; fВ=10кГц
Возьмем низкочастотный транзистор малой мощности. Например ГТ108А [3]. Это германиевый сплавной транзистор p-n-p типа.
Выпишем его основные параметры из справочника [3]:
Параметры | Режим измерения | ГТ108А |
h21ЭМИН | UКЭ=-5В; IЭ=1 мА; tС=20 оC | 20 |
h21ЭМАКС | 55 | |
СК, пФ | UКБ=-5В; f=465 кГц | 50 |
τК, нс | UКБ=-5В; f=465 кГц | 5 |
fh21Э, МГц | UКЭ=-5В; IЭ=1 мА | 0,5 |
IКБО, мкА | UКБ =-5В; tС=20 оC | 15 |
Рассчитаем параметры малосигнальной модели биполярного транзистора [1].
Среднее значение коэффициента передачи тока равно:
(1.1)
h21Э=33,2.
Выходная проводимость определяется как
(1.2)
h22Э=1,2*10-4 См.
Здесь UA— напряжение Эрли, равное 70... 150 В у транзисторов типа р-n-р.
Объемное сопротивление области базы rБ можно определить из постоянного времени τК коллекторного перехода:
(1.3)
rБ=100 Ом
Дифференциальное сопротивление эмиттерного перехода определяется по формуле:
(1.4)
rБ’Э=74 Ом
где =2,2 Ом дифференциальное сопротивление эмиттера;
0,026 В — температурный потенциал при Т= 300 К;
m=1 — поправочный коэффициент, принимаемый примерно равным 1 для германиевых транзисторов.
Входное сопротивление транзистора:
(1.5)
h11Э=174 Ом
Емкость эмиттерного перехода равна:
(1.6)
СБ’Э=4,3 нФ
Проводимость прямой передачи:
(1.7)
Y21Э=0,191 См
Рассчитаем параметры эквивалентной схемы биполярного транзистора по дрейфу [1].
Минимальная температура перехода транзистора
(1.8)
где PK— мощность, рассеиваемая на коллекторе транзистора;
(1.9)
PK=48 мВт,
RПС=0,5 °С/мВт,
tПmin= 14,4°С.
Максимальная рабочая температура перехода:
tПmax= tСmax+ RПС PK (1.10)
tПmax=49,4°С
Значение параметра h/21Э транзистора при минимальной температуре перехода:
(1.11)
h/21Э =26,4.
Значение параметра h//21Э транзистора при максимальной рабочей температуре перехода:
(1.12)
h//21Э =52,3.
Изменение параметра Δh21Э в диапазоне температур:
(1.13)
Δh21Э =26
Изменение обратного тока коллектора в диапазоне температур:
(1.14)
ΔIКБ0=81 мкА,
где α — коэффициент, принимаемый для германиевых транзисторов в интервале 0,03— 0,035
Эквивалентное изменение тока в цепи базы в диапазоне температур:
(1.15)
ΔI0=0,4 мА
Эквивалентное изменение напряжения в цепи базы, вызванное изменением температуры окружающей среды:
(1.16)
ΔU0=0,12В
Рассчитаем элементы эммитерной стабилизации тока покоя транзистора:
Зададимся падением напряжением на сопротивлении RЭ в цепи эмиттера транзистора равным
URЭ=0,2Eп=1,8В (1.17)
Определим сопротивление этого резистора:
(1.18)
RЭ=150 Ом
а также сопротивление резистора в цепи коллектора:
(1.19)
RК=267 Ом
Округлим их значения до ближайших стандартных, они будут равны соответственно 150 Ом и 270 Ом
Зададимся допустимым изменением тока коллектора в диапазоне температур из условия
(1.20)
ΔI0К=0,5I0K=6 мА
При этом необходимо учитывать, что меньшее значение изменения этого тока приводит к увеличению тока, потребляемого резистивным делителем в цепи базы, к снижению входного сопротивления и ухудшению КПД каскада.
Исходя из требуемой стабилизации тока покоя каскада, определяют эквивалентное сопротивление в цепи базы транзистора:
(1.21)
RБ=4,2 кОм (стандартная величина – 4,3 кОм)
Рассчитаем ток базы в рабочей точке:
(1.22)
IОБ=0,36 мА
Пусть U0БЭ=0,3 В
Напряжение на нижнем плече резистивного делителя в цепи базы:
(1.23)
URБ2=2,1 В
Сопротивление верхнего плеча резистивного делителя в цепи базы:
(1.24)
RБ1=10 кОм (стандартная величина – 10 кОм)
Сопротивление нижнего плеча делителя в цепи базы:
(1.25)
RБ2=4,2 кОм (стандартная величина – 4,3 кОм)
Входные сопротивления рассчитываемого RВХ и последующего RВХ2= RН каскадов:
(1.26)
RВХ1=167 Ом
Выходное сопротивление каскада:
(1.27)
RВЫХ=260 Ом
Определим емкости разделительных (СР1 и СР2) и блокировочного (СЭ) конденсаторов. Эти конденсаторы вносят частотные искажения в области нижних частот примерно в равной степени. В связи с этим заданные на каскад частотные искажения МН(дБ) в децибелах целесообразно распределить поровну между данными элементами:
МНСР1=МНСР2=МНСЭ=0,33 дБ
Емкость первого разделительного конденсатора:
(1.28)
СР1=6,1 мкФ (стандартная величина – 6,2 мкФ)
Емкость второго разделительного конденсатора:
(1.29)
СР2=11 мкФ (стандартная величина – 10 мкФ)
Емкость блокировочного конденсатора в цепи эмиттера:
(1.30)
где
(1.31)
М0=7,7;
СЭ=238 мкФ (стандартная величина – 240 мкФ);
Сопротивление нагрузки каскада по переменному току:
(1.32)
=103 Ом
Коэффициент передачи каскада по напряжению:
(1.33)
КU=20
Сквозной коэффициент передачи по напряжению:
(1.34)
КЕ=4,2
Выходное напряжение каскада:
(1.35)
UВЫХ=213 мВ
Коэффициент передачи тока:
(1.36)
Ki=20
Коэффициент передачи мощности:
(1.37)
KP=383
Верхняя граничная частота каскада определяется по формуле:
(1.38)
где — эквивалентная постоянная времени каскада в области верхних частот.
Постоянную времени можно определить из выражения
(1.39)
где и — постоянные времени входной и выходной цепей соответственно.
Эти постоянные времени определяются по формулам
(1.40)
(1.41)
где С0 — эквивалентная входная емкость каскада,
Сн — емкость нагрузки.
Эквивалентная входная емкость каскада включает емкость перехода база — эмиттер и пересчитанную на вход емкость перехода база — коллектор Ск :
(1.42)
С0=5,3 нФ;
=0,7 мкс; =0,5 мкс;
= 0,9 мкс.
fВ=180 кГц.
Определим частотные искажения в области верхних частот
(1.40)
МВ=0,013
и сравним их с заданным значением М. Т.к. условие выполняется, т.е. МВ(дБ)<М(дБ), следовательно расчет произведен верно.
Контрольное задание №2
тип схемы: 7;
тип транзистора: p-n-p - КТ363Б
Выпишем основные параметры заданных транзисторов:
КТ363Б | |
h21Эmin | 40 |
h21Эmax | 120 |
|h21Э| | 15 |
fизм, МГц | 100 |
τK, пс | 5 |
CK, пФ | 2 |
Eг=1мВ; fc=10кГц; Rг=1кОм; Rн=1кОм; Сн=100пФ; Ср2=10мкФ.
Принципиальная схема анализируемого каскада с подключенными к ней источником сигнала и нагрузкой имеет вид:
Рассчитаем режим работы транзисторов по постоянному току, пусть Еп=10 В.
Расчет схемы по постоянному току проводится в следующем порядке. Рассчитаем ток делителя в базовых цепях транзисторов:
(2.1)
Определить потенциалы баз транзисторов:
(2.2)
(2.3)
Найдем потенциалы эмиттеров транзисторов:
(2.5)
(2.6)
Напряжение U0БЭ выбирается в интервале 0.5...0,7 В для кремниевых транзисторов, выберем U0БЭ=0,5В.
Рассчитаем ток в резисторе, подключенном к эмиттеру первого транзистора:
(2.7)
Рассчитаем ток коллектора в рабочей точке, для этого найдем сначала найдем среднее значение коэффициента передачи тока:
(2.8)
h21Э=69,
тогда:
(2.9)
(2.10)
Определим напряжение на коллекторе в рабочей точке:
(2.11)
(2.12)
По результатам расчета статического режима определяются параметры моделей первого и второго транзисторов:
Выходная проводимость определяется как
(2.13)
h221=1,3*10-5 См, h222=1,2*10-5 См.
Здесь UA— напряжение Эрли, равное 100... 200 В у транзисторов типа n-р-n. Примем UA=100В.
Предельная частота усиления транзистора по току определяется по единичной частоте усиления fТ:
(2.14)
Граничная частота fТ находится по формуле:
(2.15)
fТ1,2=1,5 ГГц;
=22 МГц.
Объемное сопротивление области базы rБ можно определить из постоянной времени τК коллекторного перехода транзистора, приводимой в справочниках:
(2.16)
rБ1,2=2,5 Ом.
Дифференциальное сопротивление эмиттерного перехода определяется по формуле:
(2.17)
rБ’Э1=2,2 кОм, rБ’Э2=2,2 кОм.
где дифференциальное сопротивление эмиттера;
0,026 мВ — температурный потенциал при Т= 300 К;
m — поправочный коэффициент, принимаемый примерно равным 1.5 для кремниевых транзисторов.
rЭ1=31 Ом, rЭ2=31 Ом.
Емкость эмиттерного перехода равна:
(2.18)
СБ’Э1=3,4 пФ; СБ’Э2=3,3 пФ
Определим коэффициент передачи по напряжению, входное и выходное сопротивление оконечного каскада, построенного по схеме с ОЭ.
Входное сопротивление транзистора VT2:
h112=rБ2+rБ’Э2=2,2 кОм (2.19)
Входное сопротивление каскада:
(2.20)
Выходное сопротивление каскада:
(2.21)
Сопротивление нагрузки каскада по переменному току:
(2.22)
Коэффициент передачи каскада по напряжению:
(2.23)
KU2=16
Определим коэффициент передачи по напряжению, сквозной коэффициент передачи по напряжению, входное и выходное сопротивления входного каскада. При этом необходимо учитывать, что нагрузкой входного каскада является входное сопротивление оконечного каскада. Входной каскад построен по схеме с ОЭ.
Входное сопротивление транзистора VT2:
h111=rБ1+rБ’Э1=2,2 кОм (2.24)
Входное сопротивление каскада:
(2.25)
Выходное сопротивление каскада:
(2.26)
(2.27)
Сопротивление нагрузки каскада по переменному току:
(2.28)
Коэффициент передачи каскада по напряжению:
(2.29)
KU1=32
Сквозной коэффициент передачи по напряжению:
(2.30)
Коэффициент передачи по напряжению всего усилителя определяется по формуле
KU= KU1* KU2=500 (2.31)
Сквозной коэффициент передачи по напряжению KE всего усилителя определяется аналогично:
KЕ= KЕ1* KU2=310 (2.32)
Входное сопротивление усилителя определяется входным сопротивлением входного каскада, а выходное – выходным сопротивлением оконечного каскада.
Постоянные времени в области нижних частот, связанные с разделительными конденсаторами Ср1, Ср2, определяются по формулам:
τН1=Ср1*(Rг+ RВХ1)=13 мс (2.33)
τН2=Ср2*(RВЫХ2+ Rн)=20 мс (2.34)
Постоянная времени в области нижних частот, связанная с блокировочным конденсатором Сэ, определяется по формуле:
τН3=СэRэ=30 мс (2.35)
Эквивалентная постоянная времени в области нижних частот равна
(2.36)
где τНi, τНj - эквивалентные постоянные времени каскада в области нижних частот связанные с i-м разделительным и j-м блокировочным и конденсаторами соответственно. τН=10 мс
Нижняя частота среза определяется по формуле:
(2.37)
В усилителе имеются три постоянных времени в области верхних частот, связанные с входными цепями входного и оконечного транзисторов и емкостью нагрузки:
τВi=Сi*Ri, (2.38)
где Сi – емкость i-го узла относительно общего провода,
Ri – эквивалентное сопротивление i-го узла относительно общего провода.
Входная емкость транзистора в схеме с общим эмиттером равна:
(2.39)
(2.40)
С01=70 пФ, С02=37 пФ.
n (2.41)
(2.42)
(2.43)
Эквивалентная постоянная времени в области верхних частот равна
(2.44)
τВ=75 нс
Верхняя частота среза определяется по формуле:
(2.45)
fВ=2 МГц
Литература
1. Войшвилло. Г. В. Усилительные устройства / Г. В. Войшвилло. — М. : Радио и связь, 1983.
2. Титце, У. Полупроводниковая схемотехника. / У. Титце, К. Шенк. — М. : Мир, 1982.
3. Галкин, В. И. Полупроводниковые приборы : справочник / В. И. Галкин, А. Л. Булычев, В. А. Прохоров. — 2-е изд. — Минск : Беларусь, 1987.
Похожие работы
... современным компьютерам, должна стать мощным усилителем мыслительных процессов в образовании. И здесь особая роль отводится преподавателям, которые являются носителями технологии образования и которые должны творчески переосмыслить накопленный интеллектуальный багаж в соответствии с новыми технологическими возможностями. До настоящего времени в российском обществе отсутствует четкое понимание ...
... с применением полиграфических компьютерных технологий? 10. Охарактеризуйте преступные деяния, предусмотренные главой 28 УК РФ «Преступления в сфере компьютерной информации». РАЗДЕЛ 2. БОРЬБА С ПРЕСТУПЛЕНИЯМИ В СФЕРЕ КОМПЬЮТЕРНОЙ ИНФОРМАЦИИ ГЛАВА 5. КОНТРОЛЬ НАД ПРЕСТУПНОСТЬЮВ СФЕРЕ ВЫСОКИХ ТЕХНОЛОГИЙ 5.1 Контроль над компьютерной преступностью в России Меры контроля над ...
... 2.1 Особенности концепции учрежденческой автоматической телефонной станции Технический уровень. При проектировании необходимо применение цифровой учрежденческой автоматической телефонной станции (УАТС), построенной на унифицированной архитектуре, обеспечивающую масштабируемость, надежность, простоту обслуживания. УАТС должна обеспечить: масштабируемость; возможность наращивания внутренней ...
... , выдачей и приёмом лицензий). В условиях крупных сетей рекомендуется выделение под сервер лицензий отдельного компьютера (или нескольких - для резервирования). 1.1 Архитектура терминальных устройств В компьютерных технологиях трёхуровневая архитектура, синоним трёхзвенная архитектура (по англ. three-tier или Multitier architecture) предполагает наличие следующих компонентов приложения: ...
0 комментариев