Общие сведения об однокристальных микроЭВМ семейства МК51 и их структура
Восьмиразрядные высокопроизводительные однокристальные микроЭВМ (ОМЭВМ) семейства МК51 выполнены по высококачественной n-МОП технологий (серия 1816) и КМОП технологии (серия 1830).
Использование ОМЭВМ семейства МК51 по сравнению с МК48 обеспечивает увеличение объема памяти команд и памяти данных.
Новые возможности ввода-вывода и периферийных устройств расширяют диапазон применения и снижают общие затраты системы. В зависимости от условий использования, быстродействие системы увеличивается минимум в два с половиной раза и максимум в десять раз.
Семейство МК51 включает пять модификаций ОМЭВМ (имеющих идентичные основные характеристики), основное различие между которыми состоит в реализации памяти программ и мощности потребления.
ОМЭВМ КР1816ВЕ51 и КР1830ВЕ51 содержат масочно-программируемое в процессе изготовления кристалла ПЗУ памяти программ емкостью 4096 байт и рассчитаны на применение в массовой продукции. За счет использования внешних микросхем памяти общий объем памяти программ может быть расширен до 64 Кбайт.
ОМЭВМ КМ1816ВЕ751 содержит ППЗУ емкостью 4096 байт со стиранием ультрафиолетовым излучением и удобна на этапе разработки системы при отладке программ, а также при производстве небольшими партиями или при создании систем, требующих в процессе эксплуатации периодической подстройки.
За счет использования внешних микросхем памяти общий объем памяти программ может быть расширен до 64 Кбайт.
ОМЭВМ КР1816ВЕ31 и КР183ОВЕ31 не содержат встроенной памяти программ, однако могут использовать до 64 Кбайт внешней постоянной или перепрограммируемой памяти программ и эффективно использоваться в системах, требующих существенно большего по объему (чем 4 Кбайт на кристалле) ПЗУ памяти программ.
Каждая из перечисленных выше микросхем является соответственно аналогом БИС 8051, 80С51, 8751, 8031, 80С31 семейства MCS-51 фирмы Intel (США). Сравнительные данные микросхем приведены в табл. 2.1.
Каждая ОМЭВМ рассматриваемого семейства содержит встроенное ОЗУ памяти данных емкостью 128 байт с возможностью расширения общего объема оперативной памяти данных до 64 Кбайт за счет использования внешних микросхем ЗУПВ.
Общий объем памяти ОМЭВМ семейства МК51 может достигать 128 Кбайт: 64 Кбайт памяти программ и 64 Кбайт памяти данных.
При разработке на базе ОМЭВМ более сложных систем могут быть использованы стандартные ИС с байтовой организацией, например, серии КР580.
В дальнейшем обозначение "МК51" будет общим для всех моделей семейства, за исключением случаев, которые будут оговорены особо.
ОМЭВМ содержат все узлы, необходимые для автономной работы:
1) центральный восьмиразрядный процессор;
2) память программ объемом 4 Кбайт (только КМ1816ВЕ751, КР1816ВЕ51 и КР1830ВЕ51);
3) память данных объемом 128 байт;
4) четыре восьмиразрядных программируемых канала ввода-вывода;
5) два 16-битовых многорежимных таймера/счетчика;
6) систему прерываний с пятью векторами и двумя уровнями;
7) последовательный интерфейс;
8) тактовый генератор.
Система команд ОМЭВМ содержит III базовых команд с форматом 1, 2, или 3 байта.
Таблица 1.
Микросхемы | Аналог | Объем | Тип | Объем | Максималь- | Ток |
внутрен- | памяти | внут- | ная частота | потреб- | ||
ней па- | про- | ренней | следования | ления, | ||
мяти про- | грамм | памяти | тактовых | |||
грамм, | данных, | сигналов, | ||||
байт | байт | МГц | мА | |||
КР1816ВЕ31 | 8031АН | - | внешн. | 128 | 12,0 | 150,0 |
КР1816ВЕ51 | 8051АН | 4К | ПЗУ | 128 | 12,0 | 150,0 |
КМ1816ВЕ751 | 8751Н | 4К | ППЗУ | 128 | 12,0 | 220,0 |
КР1830ВЕ31 | 80С31ВН | - | внешн. | 128 | 12,0 | 18,0 |
КР1830ВЕ51 | 80С51ВН | 4К | ПЗУ | 128 | 12,0 | 18,0 |
ОМЭВМ имеет:
— 32 POH;
— 128 определяемых пользователем программно-управляемых флагов;
— набор регистров специальных функций.
POH и определяемые пользователем программно-управляемые флаги расположены в адресном пространстве внутреннего ОЗУ данных. Регистры специальных функций (SFR, SPECIAL FUNCTION REGISTERS) с указанием их адресов приведены в таблице 2.
Таблица 2
Обозначение | Наименование | Адрес |
* АСС | Аккумулятор | 0Е0Н |
* В | Регистр В | 0F0H |
* PSW | Регистр состояния программы | 0D0H |
SP | Указатель стека | 81Н |
DPTR | Указатель данных. 2 байта: | |
DPL | Младший байт | 82Н |
DPH | Старший байт | 83Н |
* Р0 | Порт 0 | 80Н |
* Р1 | Порт 1 | 90Н |
* Р2 | Порт 2 | 0А0Н |
* РЗ | Порт 3 | 0В0Н |
* IP | Регистр приоритетов прерываний | 0В8Н |
* IE | Регистр разрешения прерываний | 0А8Н |
TMOD | Регистр режимов таймера/счетчика | 89Н |
* TCON | Регистр управления таймера/счетчика | 88Н |
TH0 | Таймер/счетчик 0. Старший байт | 8СН |
TL0 | Таймер/счетчик 0. Младший байт | 8АН |
TH1 | Таймер/счетчик 1. Старший байт | 8DH |
TL1 | Таймер/счетчик 1. Младший байт | 8ВН |
* SCON | Управление последовательным портом | 98Н |
SBUF | Буфер последовательного порта | 99Н |
PCON | Управление потреблением | 87Н |
* — регистры, допускающие побитовую адресацию.
Ниже кратко описываются функции регистров, приведенных в таблице 1. Подробно эти регистры рассматриваются в соответствующих разделах настоящего описания.
Аккумулятор. АСС — регистр аккумулятора. Команды, предназначенные для работы с аккумулятором, используют мнемонику "А", например, MOV А, Р2.
Мнемоника "АСС" используется, к примеру, при побитовой адресации аккумулятора. Так, символическое имя пятого бита аккумулятора при использовании ассемблера ASM51 будет следующим: АСС. 5.
Регистр В. Используется во время операций умножения и деления. Для других инструкций регистр В может рассматриваться как дополнительный сверхоперативный регистр.
Регистр состояния программы. Регистр PSW содержит информацию о состоянии программы.
Указатель стека SP. 8-битовый регистр, содержимое которого инкрементируется перед записью данных в стек при выполнении команд PUSH и CALL.
При начальном сбросе указатель стека устанавливается в 07Н, а область стека в ОЗУ данных начинается с адреса 08Н.
При необходимости путем переопределения указателя стека область стека может быть расположена в любом месте внутреннего ОЗУ данных микроЭВМ.
Указатель данных. Указатель данных (DPTR) -состоит из старшего байта (DPH) и младшего байта (DPL). Содержит 16-битовый адрес при обращении к внешней памяти. Может использоваться как 16-битовый регистр или как два независимых восьмибитовых регистра.
Порт0—ПортЗ. Регистрами специальных функций Р0, Р1, Р2, РЗ являются регистры-"защелки" соответственно портов Р0, Р1, Р2, РЗ.
Буфер последовательного порта. SBUF представляет собой два отдельных регистра: буфер передатчика и буфер приемника. Когда данные записываются в SBUF, они поступают в буфер передатчика, причем запись байта в SBUF автоматически инициирует его передачу через последовательный порт. Когда данные читаются из SBUF, они выбираются из буфера приемника.
Регистры таймера. Регистровые пары (TH0.TL0) и (THI.TLI) образуют 16-битовые счетные регистры соответственно таймера/счетчика 0 и таймера/счетчика 1.
Регистры управления. Регистры специальных функций IP, IE, TMOD, TCON, SCON и PCON содержат биты управления и биты состояния системы прерываний, таймеров/счетчиков и последовательного порта.
ОМЭВМ при функционировании обеспечивает: — минимальное время выполнения команд сложения — 1 мкс: — аппаратное умножение и деление с минимальным временем выполнения команд умножения/деления — 4 мкс.
В ОМЭВМ предусмотрена возможность задания частоты внутреннего генератора с помощью кварца, LC-цепочки или внешнего генератора.
Архитектура семейства МК51 несмотря на то, что она основана на архитектуре семейства МК48, все же не является полностью совместимой с ней. В новом семействе имеется ряд новых режимов адресации, дополнительные инструкции, расширенное адресное пространство и ряд других аппаратных отличий.
Расширенная система команд обеспечивает побайтовую и побитовую адресацию, двоичную и двоично-десятичную арифметику, индикацию переполнения и определения четности/нечетности, возможность реализации логического процессора.
Важнейшей и отличительной чертой архитектуры семейства МК51 является то, что АЛУ может наряду с выполнением операций над 8-разрядными типами данных манипулировать одноразрядными данными. Отдельные программно-доступные биты могут быть установлены, сброшены или заменены их дополнением, могут пересылаться, проверяться и использоваться в логических вычислениях.
Тогда как поддержка простых типов данных (при существующей тенденции к увеличению длины слова) может с первого взгляда показаться шагом назад, это качество делает микроЭВМ семейства МК51 особенно удобными для применений, в которых используются контроллеры. Алгоритмы работы последних по своей сути предполагают наличие входных и выходных булевых переменных, которые сложно реализовать при помощи стандартных микропроцессоров.
Все эти свойства в целом называются булевым процессором семейства МК51.
Благодаря такому мощному АЛУ набор инструкций микроЭВМ семейства МК51 одинаково хорошо подходит как для применений управления в реальном масштабе времени, так и для алгоритмов с большим объемом данных.
Микросхемы семейства КМ1816ВЕ751 конструктивно выполнены в металлокерамическом корпусе типа 2123.40-6 с прозрачной для ультрафиолетового излучения крышкой. Остальные рассматриваемые в данном описании ОМЭВМ семейства МК51 конструктивно выполнены в пластмассовых корпусах типа 2123.40-2.
Условное графическое обозначение микросхем показано на рис. 1, назначение выводов приведено в табл. 2.
ОМЭВМ состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, блока последовательного интерфейса и прерываний, программного счетчика, памяти данных и памяти программ.
Двусторонний обмен информацией между функциональными блоками осуществляется с помощью внутренней 8-разрядной магистрали данных.
Рис .1. Условное графическое обозначение
Таблица 2.2
N вывода | Обозн. | Назначение | Тип |
1-8 | P1.0-P1.7 | 8-разрядный двунаправленный порт Р1. Вход адреса А0-А7 при проверке внутреннего ПЗУ (РПЗУ). | вход/ выход |
9 | RST | Сигнал общего сброса. Вывод резервного питания ОЗУ от внешнего источника (для 1816) | вход |
10-17 | P3.0-P3.7 | 8-разрядный двунаправленный порт P3 с дополнительными функциями: | вход/ выход |
P3.0 | Последовательные данные приемника - RxD | вход | |
P3.1 | Последовательные данные передатчика - TxD | выход | |
P3.2 | Вход внешнего прерывания 0- INТ0 | вход | |
P3.3 | Вход внешнего прерывания 1- INTI | вход | |
P3.4 | Вход таймера/счетчика 0: - Т0 | вход | |
P3.5 | Вход таймера/счетчика 1: - Т1 | вход | |
P3.6 | Выход стробирующего сигнала при | выход | |
записи во внешнюю память данных: - WR | |||
P3.7 | Выход стробирующего сигнала при чтении из внешней памяти данных - RD | выход | |
18 19 | BQ2 BQI | Выводы для подключения кварцевого резонатора. | выход вход |
20 | 0 В | Общий вывод | |
21-28 | P2.0-P2.7 | 8-разрядный двунаправленный порт Р2. Выход адреса А8-А15 в режиме работы с внешней памятью. В режиме проверки внутреннего ПЗУ выводы Р2.0 - Р2.6 используются как вход адреса А8-А14. Вывод Р2.7 -разрешение чтения ПЗУ: - Е | вход/ выход |
29 | PME | Разрешение программной памяти | выход |
30 | ALE | Выходной сигнал разрешения фиксации адреса. При программировании РПЗУ сигнал: - PROG | вход/ выход |
Литература
1 Тавернье К. PIC-микроконтроллеры. Практика применения: Пер. с фр. -М: ДМКПресс, 2008. - 272 с.: ил. (Серия «Справочник»).
2 Борзенко А.Е. IBM PC: устройство, ремонт, модернизация. – 2-е изд. перераб. и доп. – М.: ТОО фирма «Компьютер Пресс», 2006. – 344с.: ил.
3 Цифровые интегральные микросхемы: Справ./М. И. Богданович, И.Н. Грель, В.А. Прохоренко, В.В. Шалимо.–Мн.: Беларусь, 2001. – 493 с.: ил.
4 ДСТУ 3008-95. Документация. Отчеты в сфере науки и техники. Структура и правила оформления.
5 Охрана труда в вычислительных центрах. Ю.Г. Собаров и др. – М.: Машиностроение, 2000. – 192с.
Похожие работы
... источника меньше допустимого значения) и блок управления включает индикатор “Смените источник питания”. При восстановлении напряжения сети системы резервного электропитания опять переходит в режим нормальной работы. 2. Конструкторско-технологический раздел 2.1 Разработка печатной платы Печатные платы представляют собой диэлектрическую пластину с нанесенным на нее токопроводящим рисунком ( ...
... процессорной станции осуществлять высоконадежную защиту и эффективный контроль доступа на объект защиты. 2.Выбор и обоснование технических требований Структура технических средств системы защиты и контроля доступа в помещения (СЗКДП) должна представлять собой двухуровневую централизованную систему, работающую в реальном времени. На верхнем уровне — пульт управления (ЭВМ, совместимая с IBM ...
... МК, и восемь линий порта 3, которые могут быть запрограммированы пользователем на выполнение специализированных (альтернативных) функций обмена информацией со средой. Рис 3.1. Разработки на базе контроллеров Intel87C51FB поддерживается ассемблером, программным симулятором, внутрисхемным эмулятором фирмы Phyton и программатором. Серия Intel87C51FB подходит для широкого спектра приложений от схем ...
... к резкому увеличению тока в выходной цепи ИМС управления и возможно выход ее из строя. 7. Заключение. В результате проделанной дипломной работы была разработана плата макета и программное обеспечение блока управления реверсивным двигателем. С режимами работы: установки частоты вращения якоря двигателя, стабилизации и индикации частоты. В качестве нагрузки используется генератор, соединенный с ...
0 комментариев