Физика

6420
знаков
0
таблиц
8
изображений

Рецензия

на экзаменационную работу по физике

Выполнил(а) студент(ка) - Орлов А. С.

Правильно решено задач- 13.

Оценка за экзамен - хорошо.

Проверил А. И. Стрельцов

27.05.2008 16:28:56


Федеральное агентство связи

Сибирский Государственный университет телекоммуникаций и информатики

Экзамен

по Физике

Билет №4

проверил: _____________________

«__» _________ 2008 года

 

 

2008 г.


Билет № 4

1. По графику на рисунке 4.1.1 определите путь, пройденный велосипедистом за интервал времени от  до .

Рисунок 4.1.1

Решение:

Согласно графику движение равномерное, V = 3м/с; S1 = 3м; S2 = 9м.

ΔS = S2 – S1 = 6м

Ответ: 6 метров

Задача зачтена.

 

2. Автомобиль движется равномерно по выпуклому мосту (рисунок 4.2.1). Какое направление имеет вектор равнодействующей всех приложенных к автомобилю сил?

Рисунок 4.2.1

Варианты ответов:

1) 1; 2) 2; 3) 3; 4) 4; 5).

Решение:

Согласно рисунку, автомобиль, движущийся по закругленному мосту равномерно, испытывает центростримительное ускорение, так же, как и тело, движущееся по окружности. Следовательно, равнодействующая сил направлена по вектору 1. (F = ma)

Ответ: 1

Задача зачтена.

 

3. На рисунке 4.3.1 представлены четыре варианта взаимного расположения векторов силы, действующей на тело, и скорости тела.

Рисунок 4.3.1

В каком случае работа силы равна нулю на пути, отличном от нуля?

Решение:

На пути отличном от нуля работа силы равна нулю, когда сила перпендикулярна скорости движения. Так как A = F*S*cosά.

Где: F – действующая сила

S – путь

ά – угол между F и V

Ответ: 3)

Задача зачтена.

 

4. В пистолете длина пружины l, её упругость k. Пружина сжата на 0,2 своей длины. С какой скоростью вылетит из пистолета пуля массой m после выстрела?

Решение:

При выстреле потенциальная энергия деформированной пружины приходит в кинетическую энергию, т.е.

Задача зачтена.

 

5. Перечислите, от каких из приведенных ниже величин зависит момент инерции однородного тела.

Варианты ответа:

а) от момента приложенных к телу сил при заданной оси; б) от выбора оси вращения; в) от формы тела; г) от массы тела; д) от углового ускорения.

Решение:

Момент инерции однородного тела равен:

J = mr2, где:

m – масса тела

r – расстояние от оси вращения до края тела перпендикулярно оси.

Т.е. J – зависит от:

б) от выбора оси вращения;

в) от формы тела;

г) от массы тела.

И не зависит:

а) от момента сил приложенных к телу (M = [rF]z)

д) от углового ускорения β

Задача зачтена.

 

6. Два одинаковых заряженных маленьких шарика подвешены на изолирующих нитях одинаковой длины в общей точке и находятся в равновесии. Как изменится угол между нитями, если заряд и массу шариков удвоить при неизменных длинах нитей?

Решение:

На шарик действуют силы:

1) Кулона;

2) натяжения нити;

3) тяжести.

Система находится в равновесии => силы уравновешивают друг друга.

тогда для начального положения системы:

;

для второго положения, после увеличения зарядов и массы, имеем:

;

выразим из (3) и (4) r1 и r2:

;

угол ά увеличится

Задача зачтена.

 

7. Вблизи точечного положительного заряда расположено тело из диэлектрика . Как изменится напряженность в точках А и В, если тело убрать (рисунок 4.7.1)?

Рисунок 4.7.1

Решение:

Напряженность в точке А

Из рисунка видно, что расстояние до точки В равно 2r

Напряженность в точке В

Если убрать диэлектрик, то напряженность в точке А останется прежней, а напряженность в точке В возрастет в 7 раз.

Ответ:

Задача зачтена.

 

8. Две положительно заряженные частицы влетают в плоский конденсатор параллельно пластинам. Какая траектория соответствует движению частицы с большим удельным зарядом при одинаковых начальных скоростях (рисунок 4.8.1).

Рисунок 4.8.1

Решение:

Сила действующая на заряд в однородном электрическом поле:

qE = Fкл = ma => a = qE/m

Из рисунка видно, что а1 > а2 а значит, что q1/m > q2/m => движению с большим удельным зарядом соответствует траектория 1.

Задача зачтена.

 

9. На рисунке 4.9.1 изображен вектор скорости движущегося протона. Как в точке С направлен вектор  магнитного поля, создаваемого протоном при движении?

Рисунок 4.9.1

Решение:

Так как бегущего плюсового заряда можно принять за направление тока, то направление вектора  можно найти по правилу буравчика.

Ответ: в точке С вектор  магнитного поля направлен от нас перпендикулярно плоскости листа.

Задача зачтена.

 

10. Рамку с током поворачивают в однородном магнитном поле, изменяя угол между нормалью к рамке и направлением линий магнитной индукции: а) от 00 до 300; б) от 300 до 600. Ток в рамке поддерживается неизменным. Найдите отношение произведенных работ по повороту рамки Ааб.

Решение:

Совершенная работа зависит от изменения потока ΔФ, проходящего через рамку с током.

отношение

Ф = ВScosά => ΔФ = BS(cosάk – cosάH) (3)

Подставим (3) в (2) с учетом, что άк – конечный угол, а άн – начальный угол

Ответ: ААВ = 0,35

Задача зачтена.

 

11. Электрон пролетает через заряженный конденсатор и попадает в однородное магнитное поле, перпендикулярное электрическому (рисунки 4.11.1 и 4.11.2). Нарисовать траектории движения электрона.

Рисунок 4.11.1 Рисунок 4.11.2

Решение:

Рисунок 4.11.3 Рисунок 4.11.4

Ошибка. Нет пояснений к решению.

 

Задача не зачтена.

 

12. Магнитный поток, пронизывающий замкнутый контур, изменяется со скоростью . Найти силу индукционного тока, если сопротивление контура .

Решение:

Ответ: 3 ампера

Ошибка. Нет пояснений к решению.

 

Задача не зачтена.

 

13. В идеальном LC контуре зависимость заряда на обкладках конденсатора имеет вид:  (нКл). Электроемкость конденсатора 10 нФ. Найти индуктивность контура.

Решение:

q = 10 cos(104t – π.3)(нКл)

Из уравнения следует: q0 = 10 нКл; ώ = 104 Рад/С; С = 10 нФ

ώL = 1/ώC => ώ24C = 1 => L = 1/(ώ2C)

L = 1/(108*10*10-9) = 1 (Гн)

Задача зачтена.

 

14. В LCR – контур включен источник постоянной ЭДС (что соответствует вынужденной частоте ). От чего будет зависеть амплитуда колебаний заряда конденсатора в таком контуре: 1)от емкости конденсатора С; 2) от индуктивности катушки L; 3) от активного сопротивления R; 4) от ЭДС ; 5) от заряда, до которого может зарядиться конденсатор; 6) от максимального тока в контуре?

Решение:

Ответ: 5) от заряда до которого может зарядится конденсатор.

Задача зачтена.

 

15. На какую длину волны настроен LC – контур, если емкость конденсатора 0,1 нФ, а индуктивность катушки 0,32 Гн?

Решение:

; с другой стороны

Ответ: Контур настроен на λ= 1,13*103м.

Задача зачтена.


Информация о работе «Физика»
Раздел: Физика
Количество знаков с пробелами: 6420
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
33451
1
3

... силы тока от напряжения носит название закон Ома. Согласно закону Ома, для участка цепи сила тока прямо пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению проводника R. Основная электрическая характеристика проводника – сопротивление. Сопротивление зависит от материала проводника и его геометрических размеров. , где S – площадь поперечного сечения (м2, мм2 ) l – ...

Скачать
35347
0
0

... 1, т.к. она зависит не только от тела 1, но и от тела 2, иными словами с изменением тела 2 ускорение меняется: . Сделать это ускорение не зависящим от тела 2 можно путем перехода к другой системе отсчета (названной инерциальной СО или ИСО), движущейся ускоренно относительно СО1 (самого тела 1) с некоторым ускорением . Найти ИСО значит определить , зная . Пусть даны тело 1 совместно с его системой ...

Скачать
106409
0
0

... силы, теперь обречено постоянно думать над тем, как распорядиться ими. Эта проблема человечества в практически обозримое время - вечная. Поэтому человечество должно научиться жить с этой проблемой. Концепции физики элементарных частиц а) Современный статус понятия Элементарной частицы Представление о том, что все во Вселенной делится на вещество и силы, бытующие и в настоящее время, возникло ...

Скачать
127339
0
4

... полюсов. Самоорганизация эти поля сохраняет. Из таких колебательных систем сами, как мозаика из магнитов, складываются “классические” самоорганизующиеся модели микромира. Не будем утверждать, что здесь изложены единственно правильные варианты решений "принципиально неразрешимых" задач классической физики. Важно было показать, что такие решения есть - вопреки самым авторитетным уверениям всей ...

0 комментариев


Наверх