Тема. Электронные ключи.
План
1.Назначение и параметры электронных ключей
2.Диодные ключи
3.Транзисторные ключи
1. Назначение и параметры электронных ключей
Электронные ключи входят в состав многих импульсных устройств. Основу любого электронного ключа составляет активный элемент (полупроводниковый диод, транзистор), работающий в ключевом режиме. Ключевой режим характеризуется двумя состояниями ключа: "Включено" – "Выключено". На рисунке приведены упрощённая схема и временные диаграммы идеального ключа. При разомкнутом ключе , , при замкнутом ключе , . При этом предполагается, что сопротивление разомкнутого ключа бесконечно велико, а сопротивление равно нулю.
рис. 1.1. Схема, временные диаграммы тока и выходного напряжения идеального ключа.
В реальных ключах токи, а также уровни выходного напряжения, соответствующие состояниям "Включено" – "Выключено", зависят от типа и параметров применяемых активных элементов и переход из одного состояния в другое происходит не мгновенно, а в течение времени, обусловленного инерционностью активного элемента и наличием паразитных ёмкостей и индуктивностей цепи. Качество электронного ключа определяется следующими основными параметрами:
падением напряжения на ключе в замкнутом состоянии ;
током через ключ в разомкнутом состоянии ;
временем перехода ключа из одного состояния в другое (временем переключения) .
Чем меньше значения этих величин, тем выше качество ключа.
2. Диодные ключи
Простейший тип электронных ключей – диодные ключи. В качестве активных элементов в них используются полупроводниковые или электровакуумные диоды.
При положительном входном напряжении диод открыт и ток через него
,
где - прямое сопротивление диода.
Выходное напряжение
.
Обычно , тогда . При отрицательном входном напряжении ток идет через диод
,
где - обратное сопротивление диода.
При этом выходное напряжение
.
Как правило, и . При изменении полярности включения диода график функции повернется на угол вокруг начала координат.
рис. 1.2. Схема и передаточная характеристика последовательного диодного ключа с нулевым уровнем включения.
Приведенной выше схеме соответствует нулевой уровень включения (уровень входного напряжения, определяющий отрицание или запирание диода). Для изменении уровня включения в цепь ключа вводят источник напряжения смещения . В этом случае при диод открыт и , а при - закрыт и . Если изменить полярность источника , то график функции приобретет вид, показанный пунктирной линией.
рис. 1.3. Схема и передаточная характеристика последовательного диодного ключа с ненулевым уровнем включения.
В качестве источника часто используют резистивный делитель напряжения, подключенный к общему для электронного устройства источнику питания. Применяя переменный резистор как регулируемый делитель напряжения, можно изменять уровень включения.
Диодные ключи не позволяют электрически разделить управляющую и управляемые цепи, что часто требуется на практике. В этих случаях используются транзисторные ключи.
3. Транзисторные ключирис. 1.4. Схема и характеристики режима работы ключа на биполярном транзисторе.
Входная (управляющая) цепь здесь отделена от выходной (управляемой) цепи. Транзистор работает в ключевом режиме, характеризуемой двумя состояниями. Первое состояние определяется точкой на выходных характеристиках транзистора; его называют режимом отсечки. В режиме отсечки ток базы , коллекторный ток равен начальному коллекторному току, а коллекторное напряжение . Режим отсечки реализуется при отрицательных потенциалах базы. Второе состояние определяется точкой и называется режимом насыщения. Он реализуется при положительных потенциалах базы. При этом ток базы определяется в основном сопротивлением резистора и , поскольку сопротивление открытого эмиттерного перехода мало. Коллекторный переход тоже открыт, и ток коллектора , а коллекторное напряжение . Из режима отсечки в режим насыщения транзистор переводится под воздействием положительного входного напряжения. При этом повышению входного напряжения (потенциала базы) соответствует понижение выходного напряжения (потенциала коллектора), и наоборот. Такой ключ называется инвертирующим (инвертором). В рассмотренном транзисторном ключе уровни выходного напряжения, соответствующие режимам отсечки и насыщения стабильны и почти не зависят от температуры. Повторяющий ключ выполняют по схеме эмиттерного повторителя.
Время переключения ключей на биполярных транзисторах определяется барьерными емкостями p-n-переходов и процессами накопления и рассасывания неосновных носителей заряда в базе. Для повышения быстродействия и входного сопротивления применяют ключи на полевых транзисторах.
Похожие работы
... переходов и действиями скопления и рассасывания неосновных носителей заряда в базе. Для повышения быстродействия и входного сопротивления используют ключи на полевых транзисторах. 2. Схемы электронных ключей на полевых транзисторах Транзисторный ключ является основным элементом устройств цифровой электроники. Основные особенности транзисторного ключа является обязательным условием понимания ...
... , Тайваня, США. Телефон-трубка собрана на семи транзисторах. Питание схемы снимается с диодного моста VD4 — VD7 через герконовый (или другого типа) переключатель SA1. На транзисторах VT1, VT2, VT3 собраны дифференциальная схема и электронный ключ для набора номера. Питание разговорной части схемы снимается с делителя R5, R8 и зависит от номинала резистора R8, (150 — 200 Ом). На транзисторе VT4 ...
... цифровой подписи в системе «ДЕЛО» предусмотрена специальная опция «ЭЦП и шифрование». Опция позволяет подписывать цифровым способом документы, хранящиеся и обрабатываемые в системе автоматизации делопроизводства и электронного документооборота «ДЕЛО». При необходимости, документ может быть подписан несколькими сотрудниками, что очень удобно для автоматизации процедур согласования, визирования и ...
... точности S должен решаться с учетом реализуемого шага и закона перестройки. 5. Влияние неидеальности электронных ключей на свойства базисных структур При построении ЦУП в качестве коммутаторов чаще всего используются МДП ключи (рис. 19, 20). Рис. 19. Принципиальная (а) и эквивалентная (б) схемы i-й ветви ЦУП Рис. 20. Принципиальная (а) и эквивалентная (б) схемы i-й ветви ЦУП ...
0 комментариев