Министерство образования и науки Украины
Луганский национальный педагогический университет имени Тараса Шевченко
Естественно-географический факультет
Реферат на тему:
«Тектоносфера Земли и её закономерности»
Выполнил: студент V курса ЕГФ,
Специальности «география и биология»
Чернов Андрей Алексеевич
Луганск – 2006
Содержание
Введение
1. Строение и состав земной коры
2.Строение и состав верхней мантии
3.Тепловой режим тектоносферы
4.Закономерности в строении и развитии тектоносферы
Список использованной литературы
ВВЕДЕНИЕ
Все, что известно о тектонических, магматических и метаморфических явлениях, показывает, что они непосредственно связаны с процессами, протекающими в пределах коры и верхней мантии Земли. Именно в этих оболочках сосредоточены прямые причины эндогенных явлений. Значение процессов, происходящих на больших глубинах, сейчас неясно. Возможно, оно очень велико: есть основания предполагать, что в гравитационной дифференциации, являющейся основным источником энергии для геологических процессов, участвуют все оболочки земного шара. Но эти более глубокие процессы сказываются на поверхности не прямо, а через посредство верхней мантии и коры. Они возбуждают в последних такие движения и преобразования вещества, которые уже непосредственно приводят к тектоническим, магматическим и метаморфическим явлениям на поверхности. В связи с этой ролью коры и верхней мантии было предложено объединить эти две оболочки под общим названием «тектоносфера Земли». Состояние методов современной науки таково, что существует возможность в известной мере изучить процессы, происходящие в тектоносфере. Вместе с тем о процессах, идущих в более глубоких недрах Земли, можно преимуществррно лишь догадываться.
Важнейшим отличием тектоносферы от более глубоких оболочек являются горизонтальные неоднородности, связанные с зонами разных эндогенных режимов. Строение тектоносферы оказывается в той или иной мере различным под разными эндогенными зонами.
СТРОЕНИЕ И СОСТАВ ЗЕМНОЙ КОРЫ
Геологические, геофизические и геохимические данные указывают на существование на земном шаре двух основных типов коры: материковой и океанической.
Материковая земная кора. Средняя толщина ее около 40 км, но от места к месту она изменяется от 20 до 80 км. Уже давно распространена точка зрения, что толщина коры связана с высотой рельефа поверхности: она больше под возвышенностями и меньше под впадинами. Первоначально такая точка зрения основывалась на гравиметрических данных, на том, что состояние земной коры очень близко к изостатическому. Это значит, что под каждой равной площадью поверхности находится равная масса вещества. Полагая, что в нижележащих оболочках Земли горизонтальные неоднородности несущественны и что средняя плотность коры всюду одинакова, тектонологи пришли к заключению, что изостазия может осуществиться только в том случае, если под горными хребтами земная кора толще, чем под впадинами. Утолщение под горами должно быть весьма значительным. Оно определяется разностью плотностей коры и верхней мантии. Поскольку эта разность сравнительно невелика (средняя плотность коры 2,8 г/см3, а верхних слоев мантии 3,3 г/см3), то образуемый земной корой под горным хребтом «корень» должен вдаваться в мантию на глубину, в несколько раз превышающую высоту хребта над уровнем моря (если исходить из приведенных цифр средних плотностей, то в 5 1/2 раз). Компенсация поверхностного рельефа соответствующим рельефом подошвы коры представляет собой изостатическую модель, предложенную еще в середине прошлого века английским геодезистом Дж. Эри. Ее называют «изостазией по Эри».
Первые проверки представлений о «корнях гор» с помощью метода глубинного сейсмического зондирования дали положительный результат. Действительно, под высокими горами раздел Мохоровичича обнаруживался на большей глубине, чем под низменностями. Но когда накопился значительный фактический материал, выяснилось, что такая закономерность выдерживается только при сравнении между собой очень высоких хребтов и низменностей. Например, под Памиром толщина коры достигает 70 км, под Гималаями 80 км, а под Венгерской низменностью она равна всего лишь 20 км. Малая мощность коры наблюдается в больших грабенах (в Рейнском грабене 20 км). Но при средних высотах рельефа наблюдаются очень большие колебания толщины коры, не имеющие связи с рельефом. Например, на Русской равнине при средней толщине коры 35—40 км, есть район (на Украинском кристаллическом щите), где мощность коры достигает 55 км. Такую же толщину кора имеет под Главным Кавказским хребтом, хотя он поднят в среднем на 3 км над Русской равниной. Под Ферганской депрессией толщина коры такая же, как под соседними горными хребтами (в том и другом случае 50 км).
Отсюда можно заключить, что изостазия осуществляется более сложным путем, чем это предполагает модель Эри. Частично она может осуществляться путем горизонтальных изменений плотности коры, т. е. в соответствии с изостатической моделью английского геодезиста Дж. Пратта, который предполагал, что кора имеет плоскую подошву, а компенсация рельефа происходит за счет уменьшения средней плотности коры под возвышенностями и увеличении ее под депрессиями. Сейсмическое зондирование показывает, что в чистом виде модель Пратта не существует, но то или иное ее сочетание с моделью Эри вполне возможно. Однако еще больше оснований предполагать, что изостазия осуществляется не в пределах одной коры, а во всей тектоносфере в целом, т. е. в коре и верхней мантии совместно. Другими словами, различное соотношение между рельефом и толщиной коры указывает на наличие горизонтальных плотностных неоднородностей не только в коре, но и в верхней мантии.
Интересно отметить, что некоторые зоны аномальной толщины коры являются наследием древних структур. Например, зона очень мощной коры на Украинском щите, которая никак не сказывается в поверхностном рельефе, имеет меридиональное простирание. Такое простирание в этой области наблюдается в протерозойских структурах. Очевидно, некоторые протерозойские структуры оказались как бы «замороженными» и сохранились в строении коры и верхней мантии.
Следует, однако, отметить, что состояние верхних оболочек Земли можно считать изостатическим лишь в первом приближении. Области, где современные тектонические движения характеризуются малой интенсивностью (древние платформы, океанические котловины), действительно, находятся в состоянии, очень близком к изостазии. Но в областях современной большой тектонической активности положение иное: там имеются заметные нарушения изостазии. При этом интересно, что, как показал М. Е. Артемьев, современные вертикальные движения коры, как правило, направлены не в сторону ослабления аномалии, а в сторону ее усиления. Интенсивные поднятия и опускания в большинстве случаев оказываются антиизостатическими. Например, антиизостатическим является современное поднятие Главного Кавказского хребта. Если бы он следовал силам, направленным к восстановлению равновесия, он должен был бы не подниматься, а опускаться; так как он перегружен. А находящийся к северу от него передовой прогиб должен был бы не опускаться, а подниматься, поскольку он недогружен. В соответствии с изостатическими аномалиями движутся области, недавно освободившиеся от ледового покрова: на Балтийском и Канадском щитах аномалии отрицательные и эти щиты поднимаются. Опускание некоторых морей также направлено в сторону восстановления равновесия: положительные изостатические аномалии наблюдаются, например, в Эгейском и Тирренском морях, в западной части Средиземного моря, где в недавнее геологическое время произошло опускание, которое, вероятно, продолжается до сих пор.
Эти соотношения между вертикальными движениями коры и изостатическими аномалиями должны быть приняты во внимание при попытке выяснить причины колебательных движений. Антиизостатичность движений, вероятно, свидетельствует в пользу горизонтального перетекания материала где-то в глубине тектоносферы от прогибов к поднятиям. Что касается поднятия областей недавнего оледенения в соответствии с отрицательной аномалией, то оно объясняется разгрузкой их ото льда, после чего равновесие еще не установилось в силу высокой вязкости глубинного вещества. Опускание же морей, характеризующихся положительными аномалиями, наводит на мысль о процессе уплотнения вещества на глубине.
В строении материковой коры обычно выделяют три слоя: осадочный, «гранитный» и «базальтовый». За исключением осадочного слоя, эти названия условны и основаны на сопоставлении упругих свойств слагающего соответствующие слои со свойствами широко распространенных горных пород. В настоящее время тем же слоям могут быть даны названия, ближе отвечающие их действительному составу.
Осадочный слой, как известно, имеет прерывистое распространение. Его мощность меняется от 0 до 20 км. В среднем она равна 3 км.
«Гранитный» слой, по сейсмическим данным, характеризуется скоростями продольных сейсмических волн от 5,0 до 6,5 км/с. Состав верхней части этого слоя известен по выходам его на поверхность, главным образом на древних кристаллических щитах. Щиты приблизительно на 50% сложены гранитами, но на 40% — гнейсами и другими метаморфическими породами амфиболитовой фации метаморфизма. 10% их площади образовано породами гранулитовой и эклогитовой фаций метаморфизма, а также слабометаморфизованными кварцитами, филлитами, доломитами и основными изверженными породами. Предполагается, что тот же состав этот слой сохраняет вплоть до подошвы.
Исходя из этих сведений В.В.Белоусов предложил называть данный слой не гранитным, а гранито-гнейсовым.
Мощность гранито-гнейсового слоя в большинстве случаев колеблется от 8 до 25 км в зависимости прежде всего от общей мощности коры. На плитах платформ он занимает приблизительно половину общей мощности коры, на древних кристаллических щитах составляет 20—30% мощности всей коры, а в коре молодых хребтов (Памир, Кавказ) его роль возрастает до 40%.
На материках есть места, где можно предполагать полное отсутствие этого слоя. Его, по-видимому, нет в некоторых районах Балтийского и Анабарского щитов, где он смыт и на поверхности обнажен «базальтовый» слой. Кроме того, сейсмические данные указывают на отсутствие гранито-гнейсового слоя в некоторых глубоких тектонических депрессиях. Например, его нет в центральной части Прикаспийской синеклизы, где осадочная толща, имеющая в этом районе мощность около 18 км, залегает непосредственно на «базальтовом» слое.
Между гранито-гнейсовым и «базальтовым» слоями находится сейсмический раздел, называемый разделом Конрада. Сразу ниже этого раздела скорость продольных сейсмических волн обычно возрастает до 6,6 км/с или больше. Она может увеличиться к подошве коры до 7,3 км/с.
В настоящее время установлено, что «базальтовый» слой, называемый также «нижней корой», сложен преимущественно метаморфическими породами гранулитовой фации метаморфизма, среди которых основную роль играют плагиогнейсы с гранатом и пироксеном при почти полном отсутствии слюд (Б. Г. Лутц). Здесь же присутствуют анортозиты, чарнокиты, а также другие основные интрузивные породы. Именно такой комплекс пород обнажается на кристаллических щитах там, где предполагается отсутствие гранито-гнейсового слоя. Поэтому В.В.Белоусов назвал этот слой не «базальтовым», а гранулито-базитовым.
В самой нижней части коры, судя по ксенолитам кимберлитовых трубок, в ряде мест, но не везде, залегает слой эклогитов небольшой мощности. Коровый эклогит, состоящий из граната и пироксена, представляет собой результат застывания базальтовой магмы под давлением и обладает чрезвычайно высокой плотностью (3,6 г/см3). Образование его надо ставить в связь с выделением базальта из верхней мантии. Об этом процессе речь будет идти ниже.
Океаническая кора. Она отличается от материковой значительно меньшей толщиной. Твердая океаническая кора имеет толщину обычно около 6—7 км. Если принять среднюю толщину водного покрова в 5 км, то подошва океанической коры (раздел Мохо) окажется на глубине 11—12 км.
Океаническая кора отличается от материковой и своим составом. Она лишена гранито-гнейсового слоя. Тонкий, не более нескольких сот метров толщиной, осадочный слой залегает на базальтовом, «втором», слое. Мощность последнего обычно 1,0—1,5 км. Скорость продольных сейсмических волн в нем 5,0—5,5 км/с. Ниже находится «третий» слой, называемый также «океаническим», состав которого, как уже указывалось, неизвестен, но по различным признакам можно предполагать, что он сложен и состоит из различных основных и ультраосновных магматических пород — габбро, перидотитов, пироксенитов. Многие из пород серпентинизированы. Некоторые исследователи предполагают значительную роль в этом слое амфиболитов. Сейсмические скорости в третьем слое 6,5—7,0 км/с.
Изменения в строении коры наблюдаются в зоне срединных хребтов, где по направлению к оси хребта третий слой выклинивается и мощность второго слоя значительно увеличивается (до 5 км). Кроме того, наблюдается значительное увеличение (до 15—20 км) общей мощности океанической коры под асейсмичными хребтами. Напротив, под океаническими глубоководными желобами твердая кора оказывается очень тонкой — 3—4 км.
Кроме материкового и океанического типов коры существуют еще ее промежуточные типы. Таких типов, как это было установлено И.П.Косминской, два: субокеанический и субконтинентальный.
Субокеаническая кора. Она развита во внутренних и краевых морях там, где глубины их превышают 2000 м. Ее фундамент вполне сходен с фундаментом океанической коры, а отличием является лишь большая мощность рыхлых осадков. Во многих морях мощность последних колеблется от 3 до 6 км, но, как уже указывалось, в некоторых морях она увеличивается до 8 и даже 20 км. Эта последняя огромная мощность была обнаружена сейсмическими методами в южной части Каспийского моря.
Субконтинентальная кора. Этот тип коры характерен для окраин материков и островных дуг. Такая кора имеет, в общем, материковое строение, но отличается прежде всего меньшей мощностью, чем типичная материковая кора. Наблюдается общее уменьшение мощности коры к периферии материка. Например, в центральных областях Северной Америки мощность коры преимущественно около 40 км, близ берега Атлантического океана она уменьшается до 30 км, а в прибрежной зоне Калифорнии она не более 18 км (рис. 85). В Евразии от центральных областей материка к его периферии средняя мощность коры уменьшается от 50 до 35 км. На островных дугах толщина коры 30—35 км. Соответственно, «корни гор» на окраинах материков и на островных дугах оказываются менее глубокими, чем в центре материка.
Вторым отличием субконтинентальной коры является отсутствие четко выраженного раздела Конрада: переход от гранито-гнейсового слоя к гранулито-базитовому в ней постепенен. Это последнее свойство субконтинентальной коры особенно ясно проявляется на островных дугах.
Указанное обычное разделение коры на 2—3 слоя — лишь очень приближенная схема. Сплошь и рядом количество слоев, различающихся скоростями сейсмических волн или разделяемых поверхностями, от которых сейсмические волны отражаются, оказывается значительно большим. При этом трудно бывает определить, какую именно поверхность раздела следует считать разделом Конрада.
Сопоставление данных, полученных сейсмическими методами в разных районах, приводит к выводу, что количество слоев в коре, их толщина и свойственные им сейсмические скорости изменяются на близких расстояниях. Земная кора оказывается разделенной на блоки небольшого размера (десятки и немногие сотни километров в поперечнике), имеющие разное внутреннее строение. Те же данные показывают, что границы между такими блоками часто выражены в форме вертикальных разломов, проходящих через всю кору.
Переход от материковой коры к океанической происходит обычно в пределах континентального склона там, где глубина моря или океана достигает приблизительно 2000 м. На этой глубине выклинивается гранито-гнейсовый слой. Что касается гранулито-базитового слоя, то скорости сейсмических волн в нем такие же, как в третьем слое океанической коры. Поэтому на старых схемах эти слои объединяли в один слой, предполагая, что «базальтовый» слой материковой коры продолжается непосредственно в базальтовую кору океанов. Сейчас мы знаем, что состав океанической коры и нижней материковой коры различен и, следовательно, ни один слой коры не протягивается насквозь с материка в океан: материковая кора полностью обрывается на континентальном склоне, замещаясь совершенно иной, океанической, корой. Впрочем, детали перехода одного типа коры в другой еще недостаточно изучены.
СТРОЕНИЕ И СОСТАВ ВЕРХНЕЙ МАНТИИ
Сразу под разделом Мохоровичича и на материках и в океанах сейсмические скорости возрастают до 8,0—8,2 км/с. Эти скорости являются типичными для кровли мантии. Однако существуют зоны, где кровля мантии устроена иначе. Такими зонами являются рифты как океанические, приуроченные к срединно-океаническим хребтам, так и материковые. Аномальность строения в этих случаях состоит в том, что между подошвой коры, мощность которой уменьшена до 20—30 км, и кровлей типичной мантии обнаруживается линза мощностью до 20 км, сложенная материалом с сейсмическими скоростями, промежуточными между коровыми и мантийными (7,4—7,8 км/с). Ее состав считается смесью корового и мантийного материала.
С глубиной сейсмические скорости возрастают, и в нескольких десятках километров ниже поверхности Мохоровичича можно встретить скорости до 9,0 км/с. В этой верхней части мантии обнаружены отражающие поверхности, но они имеют, по-видимому, локальное значение.
По наблюдениям над поверхностными сейсмическими волнами установлено, что на глубине, которая в океанах близка к 50 км, а на материках колеблется между 80 и 120 км, начинается слой пониженных сейсмических скоростей, где скорость распространения сейсмических волн приблизительно на 0,3 км/с ниже их скорости в вышележащем слое мантии. Снизу слой пониженных скоростей также ограничен средой е большими сейсмическими скоростями. Попавшая в слой пониженных сейсмических скоростей упругая волна, в соответствии с законами распространения волн, отражается как от вышележащих, так и от подстилающих слоев и распространяется преимущественно внутри этого слоя, как в канале. Такой канал называется волноводом. Поэтому и слой пониженных сейсмических скоростей называется сейсмическим волноводом.
Волновод играет исключительно большую роль в развитии тектоносферы и во всех эндогенных геологических процессах. Под океанами волновод распространяется в глубь до 300—400 км, а под материками его толщина колеблется в пределах 100—150 км. Ниже, в слое Голицына, сейсмические скорости значительно возрастают.
Установлены горизонтальные неоднородности в волноводе. Они явно связаны с характером эндогенных режимов. Волновод чрезвычайно слабо выражен, а местами, по-видимому, и совсем отсутствуют под наиболее стабильными областями коры — древними кристаллическими щитами. Там, где волновод под щитами присутствует, он начинается на глубине свыше 100 км (на Канадском щите 115 км) и заканчивается на глубине 200 км. При этом он сказывается на скорости распространения только поперечных волн и не влияет на скорость продольных. Под плитами платформ этот слой проявляется в своем нормальном виде: его кровля находится на глубине около 100 км, а мощность достигает 150 км. Но под областями современного орогенеза, такими, например, как Альпы, Кавказ или Тянь-Шань, тот же слой является более мощным: его кровля поднимается до глубины 80 км, он становится, соответственно, толще и влияние его на скорости распространения как поперечных, так и продольных волн ощутительнее. Еще сильнее проявлен слой пониженных скоростей под рифтами; здесь его кровля находится на глубине 50—60 км под поверхностью и он, возможно, вверху смыкается с линзой промежуточных скоростей, лежащей между корой и мантией. Наконец, в современных вулканических областях (например, на Курильских островах) есть признаки того, что слой с пониженными сейсмическими скоростями поднимается от волновода вплоть до подошвы земной коры, а толщина его превышает 200 км. На Курильских островах, по данным С. А. Федотова, в кровле мантии были установлены скорости продольных сейсмических волн, равные 7,3—7,8 км/с; они сохраняются до глубины 80 км. И только на гдубине 125 км отмечается скорость 8,1 км/с. Но в соседних районах Тихого океана и Охотского моря уже непосредственно под корой скорости превышают 8 км/с.
Интересные данные о волноводе были получены М. Берри и Л.Кноповым для западной части Средиземного моря. Под морем слой низких сейсмических скоростей залегает на глубине 50 км. К берегам он погружается до 100 км. Следовательно, под Средиземным морем верхняя мантия построена по океаническому типу.
Судить о составе верхней мантии можно по ряду как прямых, так и косвенных признаков.
На поверхности Земли огромный объем среди пород занимают базальты. Они толстым слоем покрывают все дно океана и широко распространены, в земной коре на материках. Не подлежит сомнению, что базальтовая магма образуется глубже коры — в мантии. Однако представить себе, что верхняя мантия состоит из базальта или его интрузивного аналога — габбро, невозможно, так как этому противоречат скорости сейсмических волн (которые в мантии слишком велики для габбро), плотность (которая тоже слишком: велика) и тепловой поток (в случае габбрового состава мантии он должен был быть значительно выше, чем наблюдаемый).
Часть этих противоречий может быть снята, если предположить, что верхняя мантия состоит из эклогита, имеющего химический состав базальта, но обладающего значительно большими, чем базальт, плотностью и скоростью распространения сейсмических волн. Однако затруднения с размером теплового потока остаются. Кроме того, это предположение опровергается прямым изучением состава пород, имеющих мантийное происхождение. Такие породы образуют ультраосновные интрузии как на материках, так: и в океанах, а также широко представлены в виде ксенолитов в кимберлитовых трубках и в базальтовых излияниях. Особенно интересны с этой точки зрения кимберлитовые трубки: судя по содержащимся в них алмазам и другим минералам, требующим для своего образования высокого давления, они поднимаются с глубины от 70 до 280 км и, следовательно, могут выносить с собой обломки глубоких слоев верхней мантии. Ксенолиты из трубок были специально изучены Б.Г.Лутцем, а также В. С. Соболевым с сотрудниками. Кимберлитовые трубки и базальтовые экструзии на материках содержат включения разного состава. Но этот состав оказывается одинаковым для Сибири, Африки, Австралии и Америки, что свидетельствует о том, что включения не случайны и что по ним можно судить о типичном составе пород в глубоких недрах. Естественно, что среди включений, кроме пород, мантийного происхождения, присутствуют и породы, захваченные из разных слоев земной коры. Так, среди них можно встретить ксенолиты осадочных пород, метаморфические породы гранулитовой фации и эклогитоподобные породы, происходящие из низов коры. Мантия здесь представлена ультраосновными и основными породами.
Изучение последних показывает, что под материками мантия чрезвычайно неоднородна. Среди мантийных ксенолитов выделяются гранатовые лерцолиты, гранатовые гарцбургиты, верлиты, дуниты, пироксениты, а также эклогиты (пироп-диопсидовые и пироп-диопсид-энстатитовые). Если говорить об основных типах пород, то все это разнообразие может быть сведено прежде всего к двум породам: гранатовым перидотитам и эклогитам. Кроме этих типичных глубинных пород, встречаются менее глубинные шпинелевые перидотиты и еще менее глубинные, так называемые альпинотипные ультраосновные породы того же состава, что породы офиолитовой формации в эвгеосинклиналях.
Б. Г. Лутц указывает, что сравнение химического состава этих пород между собой и с составом хондритов, который можно рассматривать в качестве исходного материала Земли, дает важные указания на характер процессов, происходящих в мантии. Хондриты относительно богаты щелочными, щелочноземельными, радиоактивными и редкоземельными элементами. Ближе всего по составу к ним оказываются наиболее глубинные гранатовые перидотиты. Шпинелевые перидотиты и особенно альпинотипные гипербазиты содержат значительно меньше этих элементов. Но земная кора материков, напротив, чрезвычайно обогащена не только кремнием, но и щелочными, щелочноземельными, радиоактивными и редкоземельными элементами. Однако по сравнению с мантийными породами в ней меньше магния, хрома, никеля и некоторых других элементов. Это позволяет видеть в материковой земной коре продукт дифференциации мантийного вещества, а в гипербазитах мантии, залегающих относительно неглубоко (т. е. в шпине левых и альпинотипных перидотитах), — остаток от этой дифференциации.
Породы, представляющие верхнюю мантию под океанами, найдены в обрывах рифтовых долин срединно-океанических хребтов. Это — также перидотиты, но гораздо более однообразного состава, чем ультраосновные породы материковой мантии. Они близки по составу к наиболее глубинным гранатовым перидотитам материковой мантии и, как и последние, богаты щелочными, щелочноземельными, радиоактивными и редкоземельными элементами. В то же время они образуют самые верхние слои мантии под океанами. Отсюда следует, что океаническая мантия значительно менее дифференцирована, чем материковая. Это подтверждается и подсчетами глубины дифференциации для отдельных элементов: максимально она равна 40 км для всех литофильных элементов.
Следует еще раз подчеркнуть наличие существенных различий между океаническими и альпинотипными гипербазитами. Первые по своему составу являются представителями слабо дифференцированного, почти первичного хондритового материала, тогда как вторые должны рассматриваться как остаток от далеко зашедшей дифференциации того же материала, дополнительные составные части которого выделились в кору.
Наблюдаемые в различных зонах разная глубина и толщина волновода, в свете новых данных, определяются разным тепловым режимом: там, где кровля волновода ближе к поверхности и где его мощность больше, температура в верхней мантии, очевидно, выше температуры тех зон, где волновод погружен глубже и имеет меньшую мощность.
Количество жидкости в волноводе по отношению к твердым кристаллам, судя по снижению сейсмических скоростей, может колебаться от 5 до 25%. В качестве средней цифры можно принять 15%. Следует предполагать, что жидкость образует пленки, окутывающие твердые кристаллы.
Такое представление о строении слоя пониженных сейсмических скоростей приводит к выводу, что тот же слой должен отличаться пониженными плотностью и вязкостью. Действительно, присутствие жидкости в количестве 15% должно вести к снижению плотности вещества волновода приблизительно на 0,1 г/см3. При этом плотность материала в кровле волновода, где скапливаются продукты частичного плавления, становится ниже плотности покрывающих волновод самых верхних слоев мантии. В кровле волновода создается обстановка инверсии плотностей, подобная той, которая возникает в коре в связи с процессами регионального метаморфизма или в связи с присутствием толщ соли среди более плотных осадочных пород.
Вязкость при наличии жидкости также должна значительно снизиться, что позволяет рассматривать слой частичного плавления как зону, в которой должны происходить основные перемещения материала при изменении нагрузки на поверхность Земли. Исходя из такого представления, делались попытки вычислить вязкость слоя частичного плавления. Для этого изучали реакцию тектоносферы на снятие ледовой нагрузки после таяния льда на Балтийском и Канадском щитах. Е. В. Артюшков получил для слоя частичного плавления вязкость, равную 1020 П, тогда как вышележащая твердая часть тектоносферы (самые верхние слои мантии и кора) имеет среднюю вязкость на три порядка выше.
Низкая вязкость слоя частичного плавления и подвижность его материала позволили назвать этот слой астеносферой, т. е. геосферой «без прочности». Астеносфера своей подвижностью противопоставлена твердой части тектоносферы, залегающей выше и охватывающей кору и надастеносферные слои верхней мантии. Эта твердая часть тектоносферы называется литосферой. Кроме того, Е. Н. Люстихом был предложен термин «субстрат» для обозначения самых верхних твердых слоев верхней мантии, лежащих сразу под разделом Мохоровичича.
Вернемся к вопросу о дифференциации в тектоносфере Земли. Базальтовая кора океанов могла образоваться непосредственно путем выплавления базальта в астеносфере и подъема его как относительно легкого материала к поверхности. Формирование материковой коры так просто объяснить невозможно. В ней присутствуют очень большие объемы кислых пород, богатых кремнеземом, щелочами, а также редкоземельными и радиоактивными элементами. Происхождение этих объемов гранитной магмы представляет давнюю и трудную проблему. Часть гранитов образовалась путем переплавления находившихся уже в коре более древних гранитов или путем гранитизации осадочных и метаморфических пород с помощью тех химических подвижных реагентов, которые изгонялись нагреванием из нижних слоев коры. Но этот механизм является, конечно, вторичным и не может объяснить появления первых гранитов в коре. Он не объясняет и явления гранитизации, наблюдаемые среди пород гранулитовой фации метаморфизма, ниже которых уже нет гранитов, способных к «мобилизации». Очевидность убеждает в том, что гранитный материал, играющий столь большую роль в строении материковой коры, выделился из перидотитовой мантии. Но он не мог быть прямым результатом гравитационной или ликвационной дифференциации выплавленных из мантии базальтов, так как, во-первых, объем гранитов для этого слишком велик, и, во-вторых, соотношение различных элементов показывает, что здесь действовал специальный избирательный механизм, который привел к особому обогащению коры некоторыми элементами. Среди последних — редкие земли и радиоактивные элементы, помимо таких литофильных элементов, как кремний и щелочи. При образовании коры должны были действовать процессы специального извлечения этих элементов из мантии.
Этот вопрос был разработан Б. Г. Лутцем. Предполагаемый им механизм основан на представлении о кислотном магматическом выщелачивании. В мантии содержится некоторое, хотя и очень малое, количество воды. Но, вместе с тем, в связи с сильно восстановительной обстановкой там содержится и свободный водород, причем относительное количество его возрастает с глубиной. Наличие водорода ведет к кислотному режиму водных растворов и они поглощают щелочи из окружающей среды и ими обогащаются. Но по мере подъема растворов водород окисляется и частично улетучивается. В результате кислотность растворов снижается и, проходя через верхние слои мантии, они начинают растворять кислотные компоненты, в первую очередь кремнезем, а также редкие земли и радиоактивные элементы. Теперь глубинные растворы приобретают тот состав, который необходим для процессов гранитизации и регионального метаморфизма.
Результатом окисления является также нагревание растворов, что позволяет видеть в них не только необходимый для формирования гранито-гнейсового слоя материковой коры химический реагент, но и источник энергии для метаморфизма и гранитизации.
Тот же механизм позволяет понять, почему базальтовый вулканизм в эвгеосинклиналях происходит не одновременно с гранитизацией и региональным метаморфизмом, а раньше последнего. Возможно, базальтовые магмы при выплавлении поглощают всю флюидную фазу и поэтому ювенильные растворы, которые могли бы производить региональный метаморфизм и гранитизацию, не отделяются. Если предположить, что в следующий этап — в геосинклинально-инверсионную стадию — эмульсия базальтовых пленок в астеносфере застывает, то может произойти отделение ювенильных растворов, которые и поднимаются в кору. В этом объяснении намечается интересная связь между геохимическими и тектоническими процессами: мы видели, что геосинклинально-инверсионная стадия, когда происходят гранитизация и региональный метаморфизм, отличается от эвгеосинклинальной сглаживанием контрастов глыбово-волновых колебательных движений, снижением тектонической активности, выраженной в форме колебательных движений. Не может ли это снижение активности быть поставлено в связь с понижением температуры в астеносфере, приводящим к застыванию капель базальта?
Океаническая мантия не выделяет растворов, обогащенных кремнием и щелочами. Причину этого, может быть, следует искать в том, что температура в ней выше, чем в материковой мантии, и в океанической астеносфере не происходит застывания базальтовых пленок, которое необходимо для отделения глубинных растворов.
Особой проблемой является происхождение огромных объемов андезитов, выделяемых вулканами островных дуг второго типа. Эксперименты показали, что андезит может быть выплавлен из эклогита базальтового состава. Оказывается, при плавлении корового эклогита первое вещество, которое выплавляется из него при повышении температуры, имеет андезитовый состав.
ТЕПЛОВОЙ РЕЖИМ ТЕКТОНОСФЕРЫ
При средней величине теплового потока, равной 1,5 х 10ֿ6 кал/(с-см2), и наиболее распространенной величине потока 1,1 х 10ֿ6 кал/( с-см2) наблюдаются значительные локальные колебания этих величин. Колебания коррелируются с современными эндогенными зонами, а также со степенью выраженности астеносферы: в тех зонах, где астеносфера выражена сильнее, тепловой поток интенсивнее, где астеносфера слабо выражена — тепловой поток слабее.
Говоря о материках, следует прежде всего отметить, что на древних кристаллических щитах, где астеносфера, как указывалось, либо отсутствует, либо выражена очень слабо, средний тепловой поток равен 0,98 х 10 ֿ6 кал/(с-см2). На плитах древних платформ он равен в среднем 1,1 • 10 ֿ6 кал/(с-см2). В зонах слабого орогенеза на месте палеозойских геосинклиналей (таких, как Урал или Аппалачи) интенсивность потока поднимается до 1,5 в тех же единицах. Но в Тянь-Шане, где наблюдается сильная новейшая тектоническая активизация и где астеносфера выражена хорошо, он возрастает в среднем до 1,8. Еще выше (около 2,0) средние значения потока в рифтовых зонах, под которыми астеносфера сильно поднята и где существует линза вещества с промежуточными сейсмическими скоростями. Наконец, самые высокие тепловые потоки на материках наблюдаются в областях современного вулканизма, где астеносфера местами поднимается вплоть до подошвы коры. В таких областях средний тепловой поток достигает 3,6 кал/(с٠см2).
В океанах обнаруживается очень тесная связь высоких тепловых потоков со срединными хребтами. На них были отмечены самые высокие тепловые потоки, достигающие в нескольких точках 8,0 единиц, хотя средняя величина потока для рифтовых долин срединно-океанических хребтов не превышает 2,0 единиц. С удалением от гребня срединного хребта тепловой поток быстро ослабевает и становится равным 1,1—1,2 кал/(с٠см2).
Относительно высоким тепловым потоком характеризуются краевые моря (Японское Охотское и др.). Там средняя его величина достигает 2,1 кал/(с٠см2). Для средиземных морей было определено среднее значение тепловых потоков, равное 1,3.
В. Г. Поляк и Ю Б Смирнов указывали на связь интенсивности теплового потока с возрастом складчатости, регионального метаморфизма и гранитизации в той или иной зоне. По их данным, области докембрийской складчатости имеют средний тепловой поток 0,93 кал/(с-см2); каледонские складчатые зоны характеризуются средним потоком 1,11, герцинские 1,24; мезозойские 1,42; кайнозойские 1,75 кал/(с٠см2).
Эти цифры, однако, могут быть интерпретированы несколько иначе. Исходя из величины теплопроводности литосферы, можно рассчитать, что для того чтобы тепловой поток прошел путь от кровли астеносферы до поверхности Земли, достаточно от 10 до 20 млн. лет. Это означает, что на поверхности мы наблюдаем сейчас тепло, возникшее в верхней мантии не раньше начала неогена, т. е. в неотектоническую эпоху. Следовательно, это тепло может, например, отражать глубинные процессы, приведшие к развитию кайнозойских зон складчатости, метаморфизма и гранитизации, образовавшихся в неогене и позже, но оно не может иметь отношения к процессам, завершившимся в мезозое, палеозое или докембрии. Тепло, связанное с процессами, протекавшими в то отдаленное время, давно уже потеряно в пространстве. Поэтому вероятнее всего, что обнаруженная В.Г.Поляком и Ю. Б. Смирновым корреляция указывает на современный или, во всяком случае, новейший режим выделенных ими зон. Действительно, области с докембрийским возрастом интенсивных тектонических, метаморфических и магматических процессов сейчас образуют наиболее спокойные области земной коры (кристаллические щиты); зоны палеозойской эндогенной активности, как правило, в неотектоническую эпоху подверглись тектонической активизации, но относительно слабой; сильный же новейший орогенез в сочетании с интенсивным вулканизмом приурочен к зонам наиболее молодой эндогенной активности — мезозойской и кайнозойской.
Попытки связать величину теплового потока с возрастом пород имеются и для дна океанов. Но поскольку вопрос о возрасте пород, слагающих различные зоны океанов, не может считаться решенным пока не было проведено бурение сквозь второй слой, такие попытки следует считать преждевременными. Сейчас известно только, что с удалением от гребня срединного хребта интенсивность выделения тепла падает чрезвычайно быстро и затем на всей остальной площади океана она остается приблизительно одинаковой.
Интересно подсчитать, какую долю теплового потока следует полагать выделившейся из коры и какая должна иметь свой источник в более глубоких сферах земного шара. Простейший подсчет (Дж. Склатер) для материковой коры имеет следующий вид. Гранито-гнейсовый слой, которому приписывается мощность 8 км, выделяет в соответствии со средним содержанием в них радиоактивных элементов 0,25 х 10ֿ6 кал/(с-см2). Гранулито-базитовый слой, мощность которого принимается в 32 км, прибавляет к тепловому потоку 0,2 единицы. Следовательно, кора образует часть потока, равную 0,45 единицы. Верхние слои мантии, лежащие над астеносферой (субстрат), состоящие из перидотита и имеющие мощность около 100 км, выделяют всего 0,05 единиц. Отсюда вытекает, что на материках приблизительно половина теплового потока должна поступать из-под литосферы.
Если считать, что твердая консолидированная океаническая кора состоит из базальтов и имеет мощность 5 км, то ей можно приписать выделение тепла только в размере 0,1 единицы. Субстрат выделяет тепла, во всяком случае, не больше этой величины и, следовательно, для того, чтобы обеспечить в океанах поток той же интенсивности, что и на материках, из областей, лежащих глубже литосферы, должно поступать тепла не менее 1,0 единиц или вдвое больше, чем на материках.
Этот большой поток тепла из-под литосферы можно связать с меньшей глубиной залегания кровли астеносферы под океанами по сравнению с материками. Если предположить, что температура в кровле астеносферы одинакова под океанами и материками (около 1500° С), то поскольку под океанами астеносфера намного ближе к поверхности, доля ее в образовании общего теплового потока в океанах больше, чем на материках. В свою очередь меньшая глубина залегания и значительно большая мощность астеносферы под океанами находится в связи с меньшей степенью дифференцированности океанической верхней мантии по сравнению с материковой. Благодаря меньшей дифференциации, радиоактивные генераторы тепла не сосредоточены в самых верхних слоях мантии и в коре, а распределены в пределах значительно большей толщины вещества мантии. В этих условиях прогревание мантии должно быть под океанами сильнее, чем под материками. Расчеты показывают, что до глубины 400 км температуры в верхней мантии под океанами должны быть на несколько сот градусов выше температур на тех же уровнях в мантии под материками.
В распоряжении исследователей сейчас имеются методы определения размера теплового потока не только современного, но и того, который существовал в том или ином районе в прошлые геологические периоды. Для этого используются «минералы-палеотермометры», температура образования или структурного и химического изменения которых известна. Например, в условиях того давления, которое существует в гранито-гнейсовом слое коры α-кварц переходит в β-кварц при температуре около 600° С. Следовательно, по типу структуры кварца можно установить, образовался ли он при температуре ниже или выше 600° С. В качестве весьма совершенного геологического термометра используются полевые шпаты. Как известно, они состоят из молекул альбита, ортоклаза и анортита. Распределение этих молекул зависит от температуры и, пользуясь этим, можно целые серии пород надежно распределить в порядке повышающейся или понижающейся температуры.
Следовательно, изучая с этой точки зрения минералы, содержащиеся в метаморфических и магматических породах, можно установить, при какой температуре эти породы кристаллизовались, т. е. температуру метаморфического или магматического процесса. Если эти данные дополнить палеогеографической реконструкцией глубины, на которой находились породы во время своей кристаллизации, мы сможем измерить геотермические градиенты, существовавшие в то время, а отсюда, зная среднюю теплопроводность пород, — и размер теплового потока.
Такие определения были выполнены в разных странах для метаморфических толщ и гранитов разного возраста. Из полученных данных следует, что метаморфические процессы и гранитизация в земной коре проявлялись всегда в условиях повышенных геотермических градиентов, превышающих современный нормальный градиент, по крайней мере, в три, а часто и в пять раз. Считая, что средняя теплопроводность пород с тех пор не изменилась, мы должны сделать вывод, что в это же количество раз тепловой поток был тогда интенсивнее современного нормального потока. Он был, следовательно, приблизительно того размера, который характеризует современные вулканические области или даже интенсивней.
Но региональный метаморфизм и гранитизация происходят не всюду и не всегда. Они приурочены к геосинклиналям и только к определенной стадии их эволюции, к той, когда развивается геосинклинально-инверсионный режим. Это время частной инверсии и сильного складкообразования. Такая стадия занимает лишь некоторый отрезок в истории геосинклинали. Данный отрезок и характеризуется повышенными и тепловым потоком и температурой в земной коре. Породы, образующиеся в течение других стадий развития геосинклинали, в своей структуре не содержат признаков воздействия на них столь высоких температур. Поскольку процессы регионального метаморфизма и гранитизации повторяются во всех эндогенных циклах, можно заключить, что периодически повторяется и сильное прогревание земной коры. Каждый раз такое усиление теплового потока приурочено к действующим в данном цикле геосинклиналям.
ЗАКОНОМЕРНОСТИ В СТРОЕНИИ И РАЗВИТИИ ТЕКТОНОСФЕРЫ
Основные выводы из того, что сказано в этой главе, существенные для понимания глубинных причин эндогенных процессов, могут быть сформулированы следующим образом.
Существуют две разные по строению и составу тектоносферы — материковая и океаническая. Первая в значительной степени дифференцирована и крайним продуктом ее дифференциации является материковая земная кора. При образовании последней происходило усиленное извлечение из мантии кремния, щелочей, редкоземельных и радиоактивных элементов. Океаническая тектоносфера дифференцирована в значительно меньшей степени. Различия в строении двух тектоносфер распространяются в глубь на несколько сот километров.
Важной составной частью обеих тектоносфер является слой частичного плавления перидотита, слагающего верхнюю мантию. Это — астеносфера, отличающаяся от вышележащей твердой литосферы меньшими плотностью и вязкостью.
Наблюдается связь между эндогенными режимами, интенсивностью теплового потока и степенью выраженности астеносферы. Наиболее активные эндогенные процессы сопровождаются наиболее интенсивным тепловым потоком, наиболее мощной и наименее глубоко залегающей астеносферой, которая в наибольшей степени влияет на скорости распространения сейсмических волн. Такая активная астеносфера сейчас наблюдается в вулканических и рифтовых зонах на материках и в срединно-океанических хребтах в океанах. В прошлые периоды она была характерна также для геосинклиналей.
Наиболее спокойные режимы, в особенности режим кристаллических щитов древних платформ, сопровождаются значительно меньшим тепловым потоком и слабо выраженной астеносферой или ее полным отсутствием. Отсюда — очевидная прямая связь между активностью эндогенных процессов и тепловым режимом недр. Особенно повышенным тепловым потоком через кору характеризуются стадии регионального метаморфизма и гранитизации в геосинклиналях. Это последнее обстоятельство позволяет считать, что импульсивность эндогенного режима, периодическая смена стадий возбуждения и ослабления эндогенной активности обусловлены соответствующими периодическими изменениями интенсивности теплового потока. Если принять концепцию Б. Г. Лутца, то повышенный принос тепла в кору осуществляется ювенильными растворами, поднимающимися в кору из астеносферы. Поток таких растворов возникает каждый раз, когда в астеносфере происходит застывание жидкого базальта. Это означает, что периодическое прогревание коры наступает с опозданием в фазе по отношению к тепловым процессам в астеносфере: когда последняя нагревается, выплавляется базальт, который вырывается на поверхность, но, по-видимому, мало влияет на температуру коры; когда же астеносфера охлаждается, из нее поднимаются растворы, которые, окисляясь, сильно нагреваются и прогревают кору в достаточной для регионального метаморфизма и гранитизации степени. С теми же растворами в кору поступают и химические реагенты, необходимые для этих процессов. Более высокая температура океанической тектоносферы, возможно, является причиной того, что гранитизирующие растворы из нее не выделяются.
Одновременное проявление на поверхности материков различных эндогенных режимов указывает на гетерогенность теплового поля Земли: в одно и то же время тепловые потоки в разных местах разнятся по своей интенсивности. Следовательно, тепловые потоки меняют свою интенсивность как в пространстве, так и во времени. Отсюда одна из главных задач состоит в том, чтобы понять причины этих пространственных и временных вариаций земного теплового поля. Следующая задача состоит в открытии механизма, связывающего тепловой поток с тем или иным эндогенным режимом.
Список использованной литературы
1. Артемьев М. Е. Изостатические аномалии силы тяжести и некоторые вопросы их геологического истолкования. – М., 1966. – 138 с.
2. Белоусов В. В. Земная кора и верхняя мантия материков. – М., 1966. – 123 с.
3. Белоусов В.В. Основы геотектоники. – М., 1975. – 264 с.
4.Лутц Б.Г. Верхняя мантия Земли и формирование коры континентов // Вестник АН СССР. – 1973. - № 10. – С. 28 -36.
5.Магницкий В. А. Внутреннее строение и физика Земли. – М., 1965. – 379 с.
Похожие работы
... . пет назад) земная кора была много тоньше, чем в настоящее время. Какими же фактами мы располагаем, чтобы судить о начальных этапах формирования земной коры? Их три группы. Во-первых, это сравнительный анализ современного строения коры под древнейшими и молодыми геологическими структурами; во-вторых, результаты изучения древнейших пород, обнажающихся сейчас на дневной поверхности; в-третьих, ...
... — Земля и Луна — обращаются вокруг центра масс системы. Отношение массы Луны к массе Земли — наибольшее среди всех планет и их спутников в Солнечной системе, поэтому систему Земля — Луна часто рассматривают как двойную планету. Земля имеет сложную форму, определяемую совместным действием гравитации, центробежных сил, вызванных осевым вращением Земли, а также совокупностью внутренних и внешних ...
... породы. При этом толщина коры становится меньше и в среднем составляет 10-15 км. Особенно тонкой кора становится в глубоководных впадинах (4-5 км). Аномальное гравитационное поле Земли отражает суммарное действие гравитирующих масс, расположенных на различных глубинах в земной коре и верхней мантии. Несмотря на сложную ...
... присутствуют крупные тела ультрабазитов. По комплексу геолого-геофизических данных зона Иврея - тектонически выведенная на поверхность "пластина" нижней континентальной коры [Mehnert, 1975; Wasilewski and Fountain, 1982 и др.]. Над зоной зафиксирована региональная магнитная аномалия, которая по данным детальной магнитной съемки состоит из серии локальных аномалий поперечником от 0,2 до 2,0км [ ...
0 комментариев