Вариант 4-1
1. Рассчитайте параметры уравнения линейной регрессии
2. Оцените тесноту связи с помощью показателей корреляции и детерминации
3. Определите среднюю ошибку аппроксимации. Сделайте выводы
4. Оцените статистическую надежность регрессионного моделирования с помощью F-критерия Фишера и t-критерия Стьюдента
5. Оцените полученные результаты, оформите выводы
№ набл. | Район | Средний размер назначенных ежемесячных пенсий, тыс.руб., y | Прожиточный минимум в среднем на одного пенсионера в месяц, тыс.руб., x | |
1 | Брянская обл. | 240 | 178 | |
2 | Владимирская обл. | 226 | 202 | |
3 | Ивановская обл. | 221 | 197 | |
4 | Калужская обл. | 226 | 201 | |
5 | Костромская обл. | 220 | 189 | |
6 | г.Моска | 250 | 302 | |
7 | Москавская обл. | 237 | 215 | |
8 | Орловская обл. | 232 | 166 | |
9 | Рязанская обл. | 215 | 199 | |
10 | Смоленская обл. | 220 | 180 | |
11 | Тверская обл. | 222 | 181 | |
12 | Тульская обл. | 231 | 186 | |
13 | Ярославская обл. | 229 | 250 | |
Fтабл.=4,84(α =0,05) | =9,29 | =34,75 |
1. Расчет параметров уравнения линейной регрессии по данным таблицы:
Решение:
1. Уравнение линейной регрессии имеет следующий вид:
№ наблюдения | х | y | X2 | X·Y | yx | y- yx | Ai | |
1 | 178 | 240 | 31684 | 42720 | 222,51 | 17,49 | 7,29 | |
2 | 202 | 226 | 40804 | 45652 | 227,67 | -1,67 | 0,74 | |
3 | 197 | 221 | 38809 | 43537 | 226,59 | -5,59 | 2,53 | |
4 | 201 | 226 | 40401 | 45426 | 227,45 | -1,45 | 0,64 | |
5 | 189 | 220 | 35721 | 41580 | 224,87 | -4,87 | 2,22 | |
6 | 302 | 250 | 91204 | 75500 | 249,17 | 0,83 | 0,33 | |
7 | 215 | 237 | 46225 | 50955 | 230,46 | 6,54 | 2,76 | |
8 | 166 | 232 | 27556 | 38512 | 219,93 | 12,07 | 5,20 | |
9 | 199 | 215 | 39601 | 42785 | 227,02 | -12,02 | 5,59 | |
10 | 180 | 220 | 32400 | 39600 | 222,94 | -2,94 | 1,34 | |
11 | 181 | 222 | 32761 | 40182 | 223,15 | -1,15 | 0,52 | |
12 | 186 | 231 | 34596 | 42966 | 224,23 | 6,77 | 2,93 | |
13 | 250 | 229 | 62500 | 57250 | 237,99 | -8,99 | 3,93 | |
Сумма | 2646 | 2969 | 554262 | 606665 | ||||
Ср. значение | 203,54 | 228,38 | 42635,54 | 46666,54 | 2,77 | |||
Найдем b:
Тогда
Уравнение линейной регрессии имеет вид:
ŷx =184,239+0,215x
2. а) Рассчитываем коэффициент корреляции:
по формуле:
rxy= b — = 0,21 =0,78
с помощью статистической функции КОРРЕЛ-r =0,78
Связь между переменными x и y прямая, средняя, близкая к сильной, т.е. величина среднемесячной пенсии в значительной мере зависит от прожиточного минимума в среднем на одного пенсионера в месяц
б) Для определения средней ошибки аппроксимации рассчитываем столбцы
yx, y- yx, Ai:
Ai= y- yx* 100, А = 1/n∑ni=1 Ai
Получаем значение средней ошибки аппроксимации
А = 2,77%
Величина ошибки аппроксимации говорит о хорошем качестве модели.
в) Величина коэффициента детерминации получена с помощью функции
ЛИНЕЙН R2 =rxy2 = 0,61,
то есть в 61% случаев изменения среднемесячного прожиточного минимума на одного пенсионера приводят к изменению среднемесячной пенсии. Другими словами – точность подбора регрессии 61 % - средняя.
3. Оценка статистической значимости
а) по критерию Фишера:
1. Выдвигаем нулевую гипотезу о статистической незначимости параметров регрессии и показателя корреляции а = b = rxy=0;
2. Фактическое значение критерия получено из функции ЛИНЕЙН
∑(ỹx-y)²/m r²xy0,61
Fфакт= = (n-2) = (13-2) = 1,56*11 = 17,2;
∑(y-ỹ)² /(n-m-1) 1-r²xy 1-0,61
3. Fтабл =4,84
4. Сравниваем фактическое и табличное значения критерия Fфакт> Fтабл , т.е.нулевую гипотезу отклоняем и делаем вывод о статистической значимости и надежности полученной модели.
б) по критерию Стьюдента:
1. Выдвигаем гипотезу о статистически незначимом отличии показателей от нуля: a = b = r²xy = 0;
2. Табличное значение t – критерия зависит от числа степеней свободы и заданного уровня значимости α. Уровень значимости – это вероятность отвергнуть правильную гипотезу.
rxy √(n-m)
t=
√(1- r2xy)
Где n – количество наблюдений; m – количество факторов.
t= 0,78√(13-2)= 2,59=4,18
√(1-0,61)0,62
3. Фактические значения t-критерия рассчитываются отдельно для каждого параметра модели. С этой целью сначала определяются случайные ошибки параметров mа , mb, mrxy.
mа=Sост √∑х2 = 1,65;
mb= Sост = 0,004
nσх σх√n
mrxy= √(1- r2xy) = 0,062
n-m-1
где Sост=√(∑ (y- yx)) = 5 = 0,5
n-m-110
Рассчитываем фактические значения t – критерия:
tфа =a/ mа =111,66
tфb =b/ mb =53,75
tфrxy= rxy/mrxy = 12,58
tфа>tтабл ; tфb>tтабл ; tфrxy >tтабл . Нулевую гипотезу отклоняем , параметры a, b, rxy- не случайно отличаются от нуля и являются статистически значимыми и надежными.
Похожие работы
... каротажа и коэффициентам петрофизических взаимосвязей: априорные ограничения на области корреляционных полей резко сужают объем петрофизически нереализуемых сочетаний компонент, естественным образом уменьшая вероятность грубых ошибок за счет статистической регуляризации. Настройка коэффициентов параметрических уравнений системы производится во внешнем блоке нелинейного оценивания, при котором ...
... банков журналом «Forbes» (русская версия). Примечание 2. Надежность банка оценена « Forbes» как ***, что означает рейтинг уровня B. Такой рейтинг был до начала финансового кризиса примерно у половины крупных российских банков. На 01.01.09 надежность банка оценивалась рейтинговым агентством Fitch уже выше на 3 пункта, как В1 (но в марте 2009 г. она была вновь снижена, однако эту процедуру ...
0 комментариев