КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
ИМЕНИ А.Н. ТУПОЛЕВА
Кафедра РТС
Тремаскин Е.В.
Гр.5408
Разработка делителя мощности на микрополосковой линии.
Расчетно-пояснительная записка к курсовому проекту
по дисциплине
Сверхвысокие частоты
Специальность 210300
Казань 2010
Задание
Разработать сумматор на симметричной МПЛ линии:
Содержание
Введение
Делители мощности
Выбор материала
Поправочные коэффициенты
Ширина микрополосков и трансформатор сопротивлений
Набег фаз
Заключение
Список литературы
Введение
В настоящее время область применения радиоэлектронных средств расширяется, комплексы радиосистем становятся все более сложными, это полностью относится и к радиотехнике СВЧ диапазона. В связи с расширением физических возможностей радиоэлектронной аппаратуры во многих случаях необходимо не только излучать и принимать СВЧ сигнал, но также производить его обработку и преобразование, поэтому усложняются СВЧ схемы и в прежнем исполнении становятся громоздкими, поэтому возникает необходимость создания миниатюрных схем работающих в СВЧ диапазоне.
Миниатюризация схемных решений радиоаппаратуры в настоящее время реализуется с помощью гибридных пленочных и твердотельных микросхем. Наибольшие успехи в этом плане были достигнуты в области низких частот. Однако методы конструирования и технология изготовления низкочастотных схем не могут быть перенесены на схемы СВЧ диапазона, так как между этими устройствами в микроисполнении существует большое количество различий.
К радиотехническим устройствам СВЧ диапазона предъявляются жесткие требования по снижению себестоимости, повышению надежности, уменьшению габаритов и веса. Сегодня вес и габариты стали факторами, ограничивающими применение СВЧ аппаратуры, особенно в мобильных установках – на борту наземного и водного транспорта, не говоря уже о летательных аппаратах. Поэтому использование миниатюризации и миниатюризации элементов и узлов на СВЧ в современной радиоэлектронике является актуальной задачей.
По сравнению с обычной аппаратурой микрополосковые и полосковые схемы более трудоемки в разработке, поскольку связь между элементами схемы за счет краевых полей и полей излучения более трудно поддается учету, расчет многих элементов схемы производится приближенно, а подстройка готовых схем затруднена. Окончательные размеры схем приходится отрабатывать путем перебора множества вариантов.
Микрополосковые антенны, изготовленные по печатной технологии интегральных схем, обеспечивают высокую повторяемость размеров, низкую стоимость, малые металлоемкость и массу.
Микрополосковые антенны способны излучать энергию с линейной, круговой и эллиптической поляризацией, допускают удобные конструктивные решения для обеспечения работы в двух- или многочастотных режимах, легко позволяют объединить многие элементарные излучатели в ФАР и разместить их на поверхностях сложной формы.
Делители мощности
Делителями мощности называют многополюсные устройства, предназначенные для распределения мощности, поданной на вход между другими входами в заданное соотношении. В устройствах без потерь сумма выходных сигналов равна сумме входных.
Таким образом, справедливо . Здесь будут рассмотрены взаимные линейные устройства без потерь. Условие взаимности делителя мощности означает, что он может использоваться в режиме сложения сигналов, если сигналы на его входы подать в том же амплитудном и фазовом соотношении, что и на входах в режиме делителя. Делитель, работающий в режиме сложения сигналов, называют сумматором. В общем случае делители должны удовлетворять требованиям:
1) деление сигнала в заданном соотношении;
2) согласование всех плеч;
3) развязка выходных плеч;
4) широкополосность.
В зависимости от схемы делителя и его конструкции эти требования выполняются по-разному.
а б
Рис. 1
Простейшим делителем мощности является разветвление линии передачи. Разветвление может быть последовательным и параллельным (рис.1).
При последовательном разветвлении (рис.1а) входное сопротивление в точке соединения линий будет определяться суммой волновых сопротивлений выходных плеч делителя:
(1.1)
Здесь — волновое сопротивление входного плеча (обозначим его ); -сопротивления выходных плеч. На практике удобнее пользоваться нормированными сопротивлениями. Входное нормированное сопротивление делителя:
(1.2)
Условием согласования делителя с входной линией передачи будет
(1.3)
Доля мощности, отводимая в i-e плечо, пропорциональна . и, соответственно, коэффициент передачи в i-e плечо будет
(1.4)
Обычно все выходные плечи делителя приводятся к одному волновому сопротивлению , для чего в плечи делителя включаются трансформаторы волновых сопротивлений. Для четвертьволнового трансформатора в i-м плече можно записать:
(1.5)
где - волновое сопротивление четвертьволнового трансформатора (рис.2 а). Для согласованного по входу делителя мощности с одинаковым сопротивлением выходных плеч из (1.2) и (1.5) получим:
(1.6)
При параллельном разветвлении линий передачи (рис. 1 б) справедливы соотношения (1.1)- (1.6), записанные для проводимостей, т.е. входная проводимость делителя:
(1.7)
Нормированное входное сопротивление:
(1.8)
Делитель, согласованный по входу и приведенный к одному волновому сопротивлению , будет:
(1.9)
Трансформаторы сопротивлений обычно подключаются непосредственно к точке разветвления линии, но возможно подключение трансформатора к отрезку линии , произвольной длины .
Расчет согласованного по входу делителя параллельного и последовательного типов с помощью формул (1.1), (1.6), (1.7) и (1.9) сводится к следующему. По заданному волновому сопротивлению тракта и требуемому распределению сигнала по выходам определяют волновые сопротивления плеч , где - коэффициенты деления для i-го плеча.
Для последовательного разветвления , для параллельного , а волновое сопротивление трансформатора i-го плеча определяется из (1.5).
Практическая реализация разветвления линий в одной точке при n>5 затруднена, так как соединение большого числа линий в одной точке образует неоднородность, которая приводит к искажению всех параметров устройства.
Выбор материала
Учитывая требования данных в задании выберем материал. Как правило, диэлектрический материал следует выбирать с минимальным значением тангенса угла диэлектрических потерь, большой стабильностью относительной диэлектрической проницаемости и линейных размеров, так как реальные параметры устройств без их учета будут значительно отличатся от расчетных данных.
Выбираем материал листы из фторопласта – 4 фольгированные с относительной диэлектрической проницаемостью .
Найдем волновое сопротивление МПЛ линии:
Толщина печатной проводящей полоски t=0,1мм, толщина диэлектрика b=1мм, тогда и по волновым сопротивлениям фидерных линий СВЧ находим ,т.е. W=0,68931мм ширина линии.
Далее в зависимости от уровня первого бокового лепестка, выберем закон изменения амплитуды поля и вычислим поправочные коэффициенты.
Поправочные коэффициенты
Так как уровень боковых лепестков -17Дб , то закон изменения амплитуды поля запишется так:, ∆=0,5.
А(-1)=0,5
А(-0,5)=0,875
А(0)=1
А(0,5)=0,875
А(1)=0,5
А(х)=0,5+0,875+1+0,5+0,875=3,75
Нормируем к единице, получаем:
А’(-1)=0,13(3)
А’(-0,5)=0,23(3)
А’(0)=0,267
А’(0,5)=0,23(3)
А’(1)=0,13(3)
Тип сумматора – гребенка
Ширина микрополосков и трансформатор сопротивлений
Для того чтобы было удобнее выполнить чертеж увеличим ширину микрополоска в 10 раз. Тогда получим сопротивление z1=5Ом.
Соответственно ширина микрополоска тогда будет:
Вычислим трансформатор сопротивлений:
Вычислим длину волны:
Вычислим ширину остальных линий и их сопротивления в соответствии с коэффициентами деления.
На каждом из выходов необходимо обеспечить сопротивление такое же как и на входе, т.е. 50 Ом. Поэтому вычислим трансформаторы сопротивлений для выходов.
Для 1-го и 5-го вывода:
Для 2-го и 4-го:
Для 3-го:
Расчет набега фаз
Для того чтобы обеспечить необходимую фазу нужно изменить длину пути.
Возьмем d=6см, тогда ψ=0,9693.
тогда
Таким образом получили что для обеспечения набега фаз длину линии необходимо увеличивать до 24,692 см. При этом получится следующая схема:
Список литературы
1. Ганстон М.А.Р. Справочник по волновым сопротивлениям фидерных линий СВЧ / Под ред. Фрадина А.З. – М.: Связь, 1976. – 150с.
2. Авксентьев А.А., Воробьев Н.Г., Морозов Г.А., Стахова Н.Е. Устройства СВЧ для радиоэлектронных систем. Учебное пособие,2004.
3. Проектирование полосковых устройств СВЧ. Учебное пособие. Ульяновск, 2001
Похожие работы
... направленности всего стержневого излучателя определяется как произведение диаграммы направленности элементарного излучателя на множитель излучателя , определяемого по формулам: Тогда диаграмма направленности диэлектрического стержневого излучателя будет иметь вид: 5. Расчет диаграммы направленности антенной решетки Диаграмма направленности антенной решетки определяется как произведение ...
... коэффициенты линейного расширения материалов подложек, корпусов и вспомогательных материалов должны быть согласованы для обеспечения работы микросхем при повышенных уровнях мощности. Конструирование СВЧ микросхем включает расчет и проектирование изделия по заданным электрическим параметрам с учетом процессов сборки и регулировки. При этом определяют вариант схемы узла, материал и геометрические ...
... дальности. Структурная схема моноимпульсной РЛС сопровождения 4. Расчёт и определение параметров структурной схемы РПРУ 4.1. Определение эквивалентных параметров антенны Проектируемый радиолокационный приемник имеет настроенную антенну, т.е. её сопротивление чисто активно и равно сопротивлению фидера: ZА = RА = Rф = 75 Ом ...
... , хотя изучение поведения бегущих волн в замкнутых системах представляет и чисто практический интерес. В настоящей работе проведено экспериментальное исследование поведения бегущих электромагнитных волн в волноводном тракте. Целью настоящей работы являлось исследование частотной зависимости амплитуды бегущей электромагнитной волны в кольцевом волноводном тракте. Для этого необходимо было решить ...
0 комментариев