Методика эксперимента и расчет технологического режима получения антифрикционного покрытия

11548
знаков
7
таблиц
1
изображение

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

 ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ СТАЛИ И СПЛАВОВ

(ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ)

 

  КАФЕДРА РЕДКИХ МЕТАЛЛОВ И ПОРОШКОВОЙ МЕТАЛЛУРГИИ

              КОНТРОЛЬНАЯ РАБОТА

ТЕМА: «МЕТОДИКА ЭКСПЕРИМЕНТА И РАСЧЕТ ТЕХНОЛОГИЧЕСКОГО РЕЖИМА ПОЛУЧЕНИЯ АНТИФРИКЦИОННОГО ПОКРЫТИЯ»


Постановка задачи

 

Предложить оптимальный режим получения антифрикционного покрытия на твердой подложке с максимально возможной толщиной (Y1 ) при наибольшей твердости (Y2 ).

Из девяти факторов методом априорного ранжирования надо выбрать три наиболее значимых.

На процесс оказывают влияние следующие факторы:

Х1 – давление паров селена, мм.рт. ст.;

Х2 – температура нагрева пластины, С;

X3 – время термообработки, мин.;

X4 – чистота молибденового покрытия, %;

X5 – наличие защитной атмосферы, %;

Х6 – толщина молибденового покрытия, % ;

Х7 – габариты пластины, см;

Х8 – чистота селена, %;

Х9 – предварительный отжиг пластины.

Анализируем опубликованную информацию о влиянии факторов на данный объект исследования, или получаем необходимые сведения путем независимого опроса пяти специалистов, предлагая им расположить факторы по степени их влияния на процесс получения покрытия (см. табл. 2.1).

Таблица 1 - Результаты ранжирования факторов

Специалисты Ранги

Х1

Х2

Х3

Х4

Х5

Х6

Х7

Х8

Х9

1 1 2 4 4 6 5 7 5 8
2 2 3 3 7 9 5 8 6 7
3 1 1 4 5 8 6 9 7 9
4 2 2 3 6 7 5 7 5 6
5 1 2 2 8 7 6 8 6 7

Обрабатываем результаты, приведенные в таблице 1 Определяем сумму рангов в каждом столбце. Например, в столбце Х1

 , где с - число специалистов.

Определяем среднюю сумму рангов:

Находим отклонение суммы рангов от среднего значения, например для Х1:

Результаты такой обработки данных приведены ниже:

Сумма рангов 7 10 16 30 37 27 39 29 37
Отклонение суммы рангов от средней (∆i) -19 -3 -9 -23 -30 -20 -32 -22 -30

∆i2

361 9 81 529 900 400 1024 484 900

Определяем согласованность мнений специалистов по χ2 -критерию.

Мнения специалистов согласуются, если χ2расч≥ χ2табл;

здесь ; tU- число групп, образованных факторами одинакового ранга;

По табл. П. 1 [1] при определенном уровне значимости α и числе степеней свободы f=k-1 выбираем табличное значение χ2табл = 15,51 для α = 0,05 и f=(9-1) = 8. Поскольку χ2расч≥ χ2табл, мнения специалистов согласуются.

Графически сумму рангов представляем в виде диаграммы

Рисунок 1 - Диаграмма суммы рангов

По диаграмме выбираем наиболее значимые факторы. Как видно из рисунка 1, эксперты отдали предпочтение следующим трем факторам:

Х1 – давление паров селена, мм.рт. ст.;

Х2 – температура нагрева пластины, С;

X3 – время термообработки, мин.;

Используя результаты ПФЭ и обобщенный параметр оптимизации, составляем уравнение регрессии.

Выбираем параметр оптимизации,:

Y1 – толщина антифрикционного слоя, мкм;

Y2 – твердость, кг/мм2

Выбираем основной уровень и интервал варьирования факторов:

Х1 = (140 ± 100, мм.рт.ст.),

Х2 = (600 ± 100, С ),

X3 = (40 ± 20, мин.).

Таблица 2 – Матрица планирования ПФЭ

№ опыта

Х0

Х1

Х2

Х3

Y1

Y2

d1

d2

d1 d2

1 + 240 500 20 18 94 0,92 0,89 0,819 0,904
2 + 40 700 20 8 56 0,37 0,48 0,177 0,421
3 + 40 500 60 5 54 0,12 0,44 0,052 0,223
4 + 240 700 20 12 29 0,69 0,06 0,041 0,202
5 + 240 500 60 5 80 0,12 0,80 0,096 0,309
6 + 40 700 60 5 50 0,12 0,37 0,044 0,209
7 + 240 700 60 15 80 0,84 0,80 0,672 0,819
8 + 40 500 20 4 36 0,07 0,13 0,009 0,094
9 + 140 600 40 8,5 83 0,41 0,83 0,340 0,583
10 + 140 600 40 8,3 81 0,40 0,81 0,324 0,569
11 + 140 600 40 8,4 82 0,40 0,82 0,328 0,572
12 + 140 600 40 8,4 84 0,40 0,84 0,336 0,579

Рисунок 2 Функция желательности


Y1 –степень извлечения циркония;

Y2 –содержание гафния в цирконии

По табл. П2 [1] строим график функции Харрингтона. По осям откладываем натуральные значения обобщаемых параметров. Числовые значения границ желательности, согласно техническим условиям, следующие:

d

Y1

Y2

0,95 25 130
0,37 8 50

Находим по графику формальные значения (d1 и d2) обобщаемых параметров оптимизации и вычисляем обобщенный параметр оптимизации по формуле  Полученные данные, т.е. значения d1, d2 и D, заносим в таблицу 2.

Вычисляем коэффициенты уравнения

D = bo + b1X1 + b2X2 + b3X3 + bl2X1X2 + bl3X1X3+ b23X2X3 + bl23X1X2 X3 для обобщенного параметра оптимизации (таблица 3).

Таблица 3 - Расчет коэффициентов уравнения

номер опыта

Х0

Х1

Х2

Х3

X1X2

X1X3

X2X3

X1X2 X3

D
1 + + - - - - + + 0,904
2 + - + - - + - + 0,421
3 + - - + + - - + 0,223
4 + + + - + - - - 0,202
5 + + - + - + - - 0,309
6 + - + + - - + - 0,209
7 + + + + + + + + 0,819
8 + - - - + + + - 0,094

3,181 1,287 0,121 -0,061 -0,505 0,105 0,871 1,553

bi

0,397 0,160 0,015 -0,007 -0,063 0,013 0,108 0,194

Коэффициенты bi уравнения регрессии рассчитываем по формуле:

Уравнение регрессии для обобщенного параметра оптимизации имеет вид:

D = 0,397 + 0,160X1 + 0,015X2 - 0,007X3 - 0,063 X1X2 + 0,013X1X3+ 0,108X2X3 + 0,194X1X2 X3

Для проверки значимости коэффициентов регрессии выполняем четыре параллельных опыта на основном уровне (таблица 2 опыты 9...12).

 Статистическая обработка результатов.

Рассчитываем дисперсию параметра оптимизации и доверительный интервал для коэффициентов уравнения. По параллельным опытам (9... 12 в задании) подсчитываем дисперсию параметра оптимизации и доверительный интервал для коэффициентов уравнения.

Дисперсию параметра оптимизации вычисляем по формуле:

где т = 4 – число опытов на основном уровне;

Dn – значение D, получаемое в каждом из четырех параллельных опытов;

D – среднее арифметическое значение D.

Значение S2D =0,42.10-4.

Доверительный интервал для коэффициентов регрессии определяем по формуле:


где t - критерий Стьюдента;

α - уровень значимости;

- дисперсия, характеризующая погрешность в определения коэффициентов (здесь S2D - дисперсия параметра оптимизации, N - число опытов матрицы планирования).

Подставляя в эту формулу значения S'D =0,42.10-4 и N = 8, получаем S^ = 0,52-10-5. Доверительный интервал для коэффициентов регрессии

∆bi = ±3,18 (0,52.10-5)1/2 = 0,007

Величину t = 3,18 (при α = 0,05 и f = m–1 = 3) выбираем из табл. ПЗ [1].

Все абсолютные величины коэффициентов регрессии, кроме коэффициентов при Х3, больше доверительного интервала, и поэтому они являются статистически значимыми. Окончательно уравнение регрессии имеет вид:

D = 0,397 + 0,160X1 + 0,015X2 – 0,063 X1X2 + 0,013X1X3 + 0,0108X2X3 + 0,194X1X2 X3

Рассчитываем дисперсию адекватности модели. Схема расчета дисперсии адекватности модели приведена в таблице 4.

Таблица 4 - Расчет дисперсии адекватности

№ опыта

Dэксп

Dрасч

Dэксп – Dрасч

(Dэксп – Dрасч)2 .104

1 0,904 0,894 0,01 1
2 0,421 0,414 0,007 0,49
3 0,223 0,232 -0,009 0,81
4 0,202 0,194 0,008 0,64
5 0,309 0,316 -0,007 0,49
6 0,209 0,216 -0,007 0,49
7 0,819 0,824 -0,005 0,25
8 0,094 0,086 0,008 0,64

Примечание. Dрасч – арифметическая сумма членов уравнения регрессии, умноженных на знаки строк (таблица 3).

Дисперсию адекватности определяем по формуле:

где Dэксп иDрасч – значение Dрасч, рассчитанное соответственно по экспериментальным данным и по уравнению регрессии;
N = 8 – число опытов матрицы;
k = 6 – число статистически значимых коэффициентов;
1 – учитывает свободный член в уравнении регрессии.

Получаем S2ад = 4,81.10-4.

Проверяем гипотезу адекватности модели по критерию Фишера.

Расчетное значение критерия Фишера:

Табличное значение Fra =10,1 при fз = m – 1=3, fч = N – k – 1=1 и α=0,05

Поскольку Fpacч < Fтабл , гипотеза об адекватности уравнения не отвергается и им можно пользоваться для следующих этапов планирования, например, использовать метод «крутого восхождения».

Интерпретация уравнения регрессии.

Анализ уравнения регрессии показывает, что на формирование покрытия с заданными свойствами наиболее сильное влияние оказывает соотношение водной и органической фаз (Х1), затем концентрация трибутилфосфата (Х2) и в меньшей степени соотношение циркония и гафния в растворе (Хз), межфакторные взаимодействия повышают величины всех трех факторов.

Таким образом, уже из первых восьми опытов извлекаем значительную информацию об изучаемом объекте.

Метод «крутого восхождения».

После получения адекватного линейного уравнения осуществляем движение по его градиенту в область оптимума («крутое восхождение»). На этом этапе используем основные факторы со статистически значимыми коэффициентами; межфакторные взаимодействия не учитываем. Если коэффициент регрессии при факторе статистически незначим, то в опытах крутого восхождения номинал этого фактора поддерживаем постоянным.

При определении направления движения рекомендуется изменять значения факторов пропорционально величинам произведений коэффициентов регрессии с учетом их знаков на соответствующий интервал варьирования. В нашем примере при Х2 коэффициент положителен (+0,015), поэтому, двигаясь в область оптимума, образец следует нагревать.

В заданиях рекомендуется сделать не менее 5 шагов, путь ограничен масштабами координат контурных карт. При этом использовать координаты [Х1; Х3] Для нахождения толщины покрытия и [Х2; Х3] Для нахождения его твердости. В целях сокращения числа реальных опытов и увеличения шага намечается серия «мысленных опытов», результаты которых можно определить по контурным картам и графику функции желательности.

После нахождения обобщенного параметра оптимизации для соответствующего режима, по графику функции желательности определяются натуральные параметры оптимизации.

«Крутое восхождение» прекращается, когда натуральные параметры оптимизации удовлетворяют исследователя, либо когда достигнута область оптимума, т. е. движение в любую сторону от максимально полученного обобщенного параметра оптимизации приводит к худшим показателям качества.

Таблица 5 - Результаты и расчет крутого восхождения

Факторы

Соотноше

ние водной и органической фаз, Х1

Концентрация трибутилфосфата, (%), С, Х2

Соотношение циркония и гафния в растворе, X3

Степень извлечения церкония, ηZr

Содержание гафния в цирконии, ηHf/Zr

d1

d2

D=( d1.d1)1/2

1 2 3 4 5 6 7 8 9
Основной уровень 140 600 40
Интервал варьирования (I) 100 100 20

Коэффициент регрессии bi

+0,160 +0,015 -0,007

Произведение I. bi

+16 +1,5 -0,7
Округелние, z +16 +2 -1

Шаг,z.3

16 2 -3
1 опыт (реализован-ный) 156 602 37 5 75 0,16 0,69 0,33
2 опыт (мысленный) 172 604 34
3 опыт (мысленный) 188 606 31
4 опыт (реализован-ный) 204 608 28 18 90 0,86 0,82 0,84
5 опыт (мысленный) 220 610 25
6 опыт (реализован-ный) 236 612 22 25 100 0,97 0,87 0,92
7 опыт (мысленный) 252 614 19
8 опыт (реализован-ный) 268 616 16 22 110 0,94 0,92 0,93
9 опыт (мысленный) 284 618 13
10 опыт (реализован-ный) 300 620 10 15 100 0,78 0,87 0,82
11 опыт (мысленный) 316 622 7
12 опыт (реализован-ный) 332 624 4 5 85 0,16 0,78 0,35

Примечание. Увеличение шага в 3 раза вызвано погрешностью в измерении температуры и давления.

Определяем наилучшее значение качества по максимальной величине D.

Лучшие показатели качества, которые оцениваются по максимальному значению обобщенного параметра оптимизации (D = 0,93), получены в опыте № 8 при давлении паров селена 268 мм. рт. ст., температуре образца 616°С и времени селенирования 16 минут. При этом толщина самосмазывающегося покрытия диселенида молибдена составила 22 мкм, а микротвердость H =110 кг/мм2. Этот режим и был рекомендован для получения антифрикционных покрытий на изделиях, работающих в настоящее время в различных областях промышленности.


Список использованных источников

 

[1] Колчин Ю.О., Егорычев К.Н., Миклушевский В.В. Организация и планирование эксперимента // Учебное пособие для практических занятий. – М.: МИСиС, 1997


Информация о работе «Методика эксперимента и расчет технологического режима получения антифрикционного покрытия»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 11548
Количество таблиц: 7
Количество изображений: 1

Похожие работы

Скачать
94641
8
25

... машиностроения. Около 40% всех заготовок, используемых в машиностроении, получают литьем. Однако, литейное производство является одним из наиболее экологически неблагоприятных. В литейном производстве применяется более 100 технологических процессов, более 40 видов связующих , более 200 противопригарных покрытий. Это привело к тому, что в воздухе рабочей зоны встречается до 50 вредных веществ, ...

Скачать
59974
0
0

... перевода машин и механизмов на использование более чистых источников энергии (солнечной, водородной, электрической); повышение знаний инженеров и обслуживающего персонала в области триботехники, а также взаимосвязи триботехнических показателей с экономикой и экологией. Проблемы технического обновления различных отраслей машиностроения Ушедший в историю 20 век не освободил ...

Скачать
241230
29
12

... состава, введенным согласно закону «О городском пассажирском транспорте», договорных отношений между местными властями и транспортными предприятиями. 3. РЕСУРСОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ НА ГОРОДСКОМ ЭЛЕКТРИЧЕСКОМ ТРАНСПОРТЕ 3.1. Регенерация масел Установки для регенерации отработанных масел и схемы технологического процесса Проводимые исследования кафедрой городского электрического транспорта ( ...

Скачать
73958
13
0

... с наполнителями. С возрастанием удельной поверхности наполнителей [12,14] адгезионное взаимодействие, как правило, усиливается, поскольку в присутствии высокомолекулярных наполнителей возрастает объем полимера, иммобилизованного в граничные слои, по сравнению с низкодисперсными наполнителями. Это проявляется в повышении температуры стеклования (Тс) образцов. Содержащих наполнители с высокой ...

0 комментариев


Наверх