Понятие самоорганизация означает упорядоченность существования материальных динамических, то есть качественно изменяющихся систем. Оно отражает особенности существования таких систем, которые сопровождаются их восхождением на все более высокие уровни сложности и системной упорядоченности или материальной организации.
Картина химического мира весьма отчетливо свидетельствует об отборе элементов. Сейчас известно около 8 млн химических соединений. 96% из них созданы природой из 6-18 основных элементов (Na,K,Ca,Mg,Fe,Si,Al,Cl,Cu,Zn), а из оставшихся 95 элементов таблицы Менделеева природа создала лишь 300000 неорганических соединений.
Определяющими факторами в отборе являются требования соответствия между строительным материалом и объектами с высокоорганизованной структурой. С химической точки зрения такие требования сводились к отбору элементов, способных к образованию прочных и энергоемких химических связей и лабильных, то есть легко подвергающихся гомолизу, гетеролизу или циклическому распределению. Поэтому углерод - органоген номер 1.
В ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп.
На ранних стадиях химической эволюции катализ вообще отсутствовал. Условия высоких температур, электрических разрядов и радиации препятствовали образованию конденсированного состояния. Первые проявления катализа начинались при смягчении условий и образовании первичных тел. Роль катализатора возросла по мере того, как физические условия приблизились к земным. Но роль катализатора вплоть до образования более или менее сложных органических молекул оставалась несущественной. Появление таких относительно несложных систем, как СНОН а тем более аминокислот и первичных сахаров было своеобразной некаталитической подготовкой старта для большого катализа. Роль катализа в развитии химических систем после достижения стартового состояния начала возрастать сравнительно быстро. Отбор активных соединений происходил в природе из тех продуктов, которые получались относительно большим числом химических способов и обладали широким каталитическим спектром.
Химические процессы и процессы жизнедеятельности. Катализ. Ферменты. Освоение каталитического опыта живой природы.
Роль ферментов в процессе жизнедеятельности - ведущая (ферментология – стержневая отрасль знаний о процессах жизнедеятельности, основной предмет которой составляет исследование брожения). Эта идея впервые была предложена Луи Пастером. Установлено, что одни и те же физические и химические законы управляют как абиогенными процессами, так и процессами жизнедеятельности. С другой стороны, доказана исключительная специфичность живого, которая (на молекулярном уровне) заключается в существенном различии принципов действия катализаторов и ферментов, в различии механизмов образования полимеров и биополимеров.
Катализ – увеличение скорости химич. реакции в присутствии катализаторов. Большинство процессов, происходящих в живых организмах – каталитические.
Ферменты – биол. катализаторы, присутствующие во всех живых клетках. Осуществляют превращения веществ в организме, регулируя тем самым его обмен веществ. По хим. природе- белки. Каждый вид ферментов катализирует превращение определенных вещ-в.
1-й путь освоения каталитич. опыта живой природы – развитие исследований в области металлокомплексного катализа с постоянной ориентацией на соответствующие объекты живой природы ( К. Циглер)
2-й путь – моделирование биокатализаторов (ферментов).
3-й путь – сопряжен с химией иммобилизованных систем. Сущность иммобилизации состоит в закреплении выделенных из живого организма ферментов на твердой поверхности путем адсорбции.
4-й путь – изучение всего кат. опыта живой природы, в т. ч. и опыта формирования самого фермента, клетки и даже организма.
Возможности современных биотехнологий. Клонирование и проблемы воспроизведения живых организмов.
Современные биотехнологии дают возможность получить белок, ранее не существовавший в природе, любой желаемой структуры ( процесс получил название мутагенеза),путем ввода отрезка ДНК в микроорганизм. Кроме того, ученые научились соединять ДНК из разных организмов, определять и выделять сегменты ДНК, кодирующие нужный белок, определять нуклеотидные последовательности в больших фрагментах ДНК.
Клонирование – искусственное выращивание нового животного из соматической клетки, создание генетически тождественного существа. В 1997 г. клонировали овцу. Но остается открытым вопрос о нравственных, социальных, биологических и других последствиях таких экспериментов.
Найти единственно нужный сегмент ДНК, содержащийся всего в одном гене, очень трудно. Поэтому применяют рекомбинантные ДНК, встраивая фрагменты ДНК клетки в миллион быстро делящихся бактерий, применяя затем методы диагностики, чтобы найти бактерии с новым геном, и получая т.о. миллиарды одинаковых копий каждого гена.
Особенности биосферного уровня организации материи. Развитие традиционных принципов в биологии. Живое и неживое.
Все объекты природы(живой и неживой) можно представить в виде систем, обладающими особенностями, характеризующими их уровень организации. Концепция структурных уровней живой материи включает представления системности и связанной с ней органической целостностью живых организмов. Живая материя дискретна, т. е. делится на составные части более низкой организации, имеющие определенные функции.
Биосфере присуща хиральность(сохранение только одной из двух возможных пространственных структур: L-, D-структуры). Две основополагающие жизненные системы: обмена вещества и воспроизводства материальных основ живой клетки. Жизнь – одна из самых высоких известных человеку форм упорядоченности вещества. Этапы перехода от неживого к живому: 1.синтез исходных органических соединений из неорганических веществ. 2.формирование в первичных водоемах из органич.соединений биополимеров, липоидов, углеводородов.3.самоорганизация сложных органических соединений, затем образование простейшей клетки.
Биология – совокупность наук о живой природе – об огромном разнообразии вымерших и ныне населяющих Землю живых существ, их строении и функциях, распространении и развитии, связанных друг с другом и с неживой природой. На начальном этапе развития биология была традиционной, т.е. носила описательный характер. Объект ее изучения – живая природа в естественном состоянии и целостности. Большой вклад в традиц. биологию внес Карл Линней. Наиболее значительное ее достижение – классификация растительного и животного мира. Ее научный материал накапливается в результате непосредственного наблюдения объекта изучения – живой природы.
Структурные уровни организации материи в биологии. Принципы систематики простейших организмов, растений и животных.
С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц и заканчивается живыми сообществами. Концепция структурных уровней впервые была предложена в 20-х гг нашего столетия. В соответствии с ней структурные уровни различаются не только по классам сложности, но и по закономерностям функционирования. Концепция включает в себя иерархию структурных уровней, в которой каждый последующий уровень входит в предыдущий.
Линней создал систему растительного и животного мира и построил наиболее удачную классификацию, которая производилась по определенным признакам, отражающим закономерности, наблюдаемые в живой природе. По таким признакам растения объединились в группы, называемые таксонами. Линней ввел бинарную номенклатуру для обозначения рода и вида.
Мишель Адансон предложил принцип классификации растений по сходству максимального числа признаков с применением математических методов. Естественные системы создаются как правило в рамках какой-либо концепции, включающей принцип нахождения генеалогического родства и установления преемственности происхождения.
Строение и функции живой клетки. Основополагающие жизненные процессы в организмах.
Клетка – элементарная живая система, основа строения и жизнедеятельности всех животных и растений . Клетки существуют как самостоятельные организмы( простейшие, бактерии), так и в составе многоклеточных организмов, в которых имеются половые клетки, служащие для размножения, и клетки тела( соматические), различные по строению и функциям( нервные, костные, мышечные, секреторные). В каждой клетке различают две основные части: ядро и цитоплазму, в которых находятся органоиды( комплекс Гольджи, ядрышки(в ядре), эндоплазматическая сеть, митохондрии, клеточная мембрана). Клетки растений как правило, покрыты твердой оболочкой.
Существует два основных жизненных процесса в организме: обмен веществ и воспроизводство основ живой клетки. Назначение обмена веществ – поддерживать уровень упорядоченности организма и его частей. Система воспроизведения содержит в закодированном виде полную информацию, необходимую для построения из запасенного клеткой органического материала нужного в данный момент времени белка. Она же ведает механизмом извлечения и реализации соответствующей программной информации. Свои функции эта система осуществляет посредством ДНК и РНК.
При подготовке этой работы были использованы материалы с сайта http://www.studentu.ru
Похожие работы
... вещей (»арден 1987: 53-68, Назаретян 1991: 60, Абдеев 1994: 150- 160). Атрибутивная концепция информации - информация как мера упорядоченности структур и их взаимодействий на всех стадиях организации материи (Абдеев 1994: 162). Одна из самых сложных проблем современного естествознания - функционирование отражения в неживом мире (существует ли в неживом мире опосредующее звено между ...
... философии - особенно с методологических позиций материалистического понимания истории и материалистической диалектики с учетом социокультурной обусловленности этого процесса. Однако в западной философии и методологии науки XX в. фактически - особенно в годы «триумфального шествия» логического позитивизма (а у него действительно были немалые успехи) - научное знание исследовалось без учета его ...
... инерциальных системах отсчета. Пространственно-временной континуум – неразрывная связь пространства и времени и их зависимость от системы отсчета. Тема 11. Основные концепции химии 1. Химия как наука, ее предмет и проблемы Важнейшим разделом современного естествознания является химия. Она играет большую роль в решении наиболее актуальных и перспективных проблем современного общества. К ...
... эволюционного процесса. В нем отражается одна из фундаментальных черт живого – диалектика взаимодействия органической системы и среды. Таким образом, дарвиновская теория эволюции опирается на следующие принципы: - Борьба за существование; - Наследственности и изменчивости; - Естественно отбора. Эти принципы являются краеугольным основанием научной биологии. Э. ...
0 комментариев