Эволюционная теория Дарвина

101539
знаков
1
таблица
0
изображений

Реферат по Биологии

Тема: “ Развитие жизни на Земле. ”


УченикаСидоренко Евгения


План:

Введение.

А.Предисловие

Б. Масштабы Геологического Времени

В.Основные Подразделения Геологической Истории Земли

Развитие жизни в криптозое.

А. Предисловие

Б. Отложения Криптозоя

В. Резкое Увеличение Богатства Ископаемой Фауны

Жизнь в палеозойской эре.

А. Предисловие

Б. Арена Жизни в Палеозое

В. Жизнь в Морях и Пресных Водоемах Палеозоя

Г. Превосходство Позвоночных Рыб над Членистоногими

Д. Появление всех подклассов костных рыб

Е. Появление обильной наземной флоры

Ж. Появление животных на суше

З. Появление крылатых насекомых

И. Расцвет Амфибий

К. Жизнь в Позднем Палеозое

Л. Появление Терапсид

Мезозойская эра – век рептилий.

А. Предисловие

Б. Триас — Время Обновления Фауны

В. Многочисленные Псевдозухии

Г. Жизнь в Мезозойских Морях и Морские Рептилии

Д. Летающие Ящеры и Птицы

Е. Изменения в Составе Наземных Биоценозов во Второй Половине Мезозоя

Ж. Великое Вымирание


Кайнозой – век млекопитающих.

А. Предисловие

Б. Развитие Жизни в Палеогене

В. Оригинальная фауна Африки.

Г. Развитие Жизни в Неогене

Д. Четвертичный Период

Заключение.


Введение.

Предисловие

Эволюционное развитие организмов исследуется целым рядом наук, рассматривающих разные аспекты этой фундаментальной проблемы естествознания. Ископаемые остатки животных и растений существовавших на Земле в дрошедшие геологические эпохи, изучает палеонтология, которую и следует поставить на первое место среди наук, непосредственно связанных с исследованием эволюции органического мира. Изучая остатки древних форм и сопоставляя их с ныне живущими организмами, палентологи реконструируют облик, образ жизни и родственные связи вымерших животных и растений, определяют время их существования и на этой основе воссоздают филогенез — истори­ческую преемственность разных групп организмов, их эволюционную историю. Однако в решении этих сложных проблем палеонтология должна опираться на данные и выводы многих других наук, относящихся к кругу биологических, геологических и географических дисциплин (сама палеонтология, изучая ископаемые остатки организмов, нахо­дится как бы на стыке биологии и геологии). Для понимания условий жизни древних организмов, определения времени их существования и закономерностей перехода их остатков в ископаемое состояние палеонтология использует данные таких наук, как историческая геология, стратиграфия, палеогеография, палеоклиматология и др. С другой стороны, для анализа строения, физиологии, образа жизни и эволюции вымерших форм необходимо опираться на детальное зна­ние соответствующих сторон организации и биологии ныне существую­щих организмов. Такое знание дают прежде всего работы в области сравнительной анатомии. Одной из основных задач сравнительной анатомии явля­ется установление гомологии органов и структур у разных видов. Под гомологией понимается сходство, основанное на родстве; нали­чие гомологичных органов доказывает прямые родственные связи об­ладающих ими организмов (как предков и потомков или как потомков общих предков). Гомологичные органы состоят из сходных элемен­тов, развиваются из сходных эмбриональных зачатков и занимают сходное положение в организме. Развивающаяся ныне функциональная анатомия, а также срав­нительная физиология дают возможность подойти к пониманию функционированля органов у вымерших животных. В анализе строе­ния, жизнедеятельности и условий существования вымерших орга­низмов ученые опираются на принцип актуализма, выдвинутый гео­логом Д. Геттоном и глубоко разработанный одним из крупнейших геологов XIX в. — Ч. Лайелем. Согласно принципу актуализма, закономерности и взаимосвязи, наблюдаемые в явлениях и объектах неорганического и органического мира в дате время, действовали и в прошлом (а отсюда «настоящее есть ключ к познанию прошлого»). Конечно, этот принцип является допущением, но, вероятно, он верен в большинстве случаев (хотя всегда нужно принимать во внимание возможность какого-то своеобразия в протекании тех или иных процессов в прошлом по сравнению с современ­ностью). Палеонтологическая летопись, представленная ископаемыми ос­татками вымерших организмов, имеет пробелы, иногда очень круп­ные, обусловленные специфичностью условий захоронения остатков организмов и крайней редкостью совпадения всех необходимых для этого факторов. Для воссоздания филогенеза организмов во всей полноте, для реконструкции многочисленных «недостающих звеньев» па родословном древе (графическом изображе­нии филогенеза) чисто палеонтологические данные и методы оказы­ваются во многих случаях недостаточными. Здесь приходит на помощь так называемый метод тройного параллелизма, введенный в науку известным немецким ученым Э. Геккелем и основанный на сопоставлении палеонтологических, сравнительно-анатомических и эмбриологических данных. Геккель исходил из сформулированного им «основного биогенетического закона», гласящего, что онтогенез (индивидуальное развитие организма) есть сжатое и сокращенное повторение филогенеза. Следовательно, изучение индивидуального развития современных организмов позволяет в какой-то мере судить о ходе эволюционных преобразований их далеких предков, в том числе и не сохранившихся в палеонтологической летописи. Позднее А. Н. Северцов в своей теории филэмбриогенезов показал, что соотношение онтогенеза и филогенеза гораздо сложнее, чем считал Э. Геккель. В действительности не филогенез творит индивидуальное развитие (новые эволюционные приобретения удлиняют онтогенез, прибавляя новые стадии), как полагал Геккель, а, наоборот, наследственные изменения хода онтогенеза приводят к эволюционным перестройкам («филогенез есть эволюция онтогенеза»). Лишь в некоторых частных случаях, когда эволюционная перестрой­ ка какого-либо органа происходит посредством изменения поздних стадий его индивидуального развития, т. е. новые признаки формируются в конце онтогенеза (такой способ эволюционной перестройки онтогенеза Северцов назвал анаболией), действительно наблюдается такое соотношение между онтогенезом и филогенезом, которое описы­вается биогенетическим законом Геккеля. Только в этих случаях можно привлекать эмбриологические данные для анализа филогенеза. Сам А. Н. Северцов дал интересные примеры реконструкции гипо­ тетических «недостающих звеньев» в филогенетическом древе. Изучение онтогенезов современных организмов имеет еще и другое, не менее важное для анализа хода филогенеза значение: оно позволяет выяснить, какие изменения онтогенеза, «творящие эволюцию», возможны, а какие — нет, что дает ключ к пониманию конкретных эволюционных перестроек. Для понимания сущности эволюционного процесса, для причинного анализа хода филогенеза самое первостепенное значение имеют выводы эволюционистики — науки, называемой также теорией эво­люции или дарвинизмом, по имени великого создателя теории естественного отбора Ч. Дарвина. Эволюционистика, изучающая сущность, механизмы, общие закономерности и направления эволюционного процесса, является теоретической базой всей современной биологии. По сути дела, эволюция организмов представляет собой форму суще­ствования живой материи во времени, и все современные проявления жизни, на любом уровне организации живой материи, могут быть поняты лишь с учетом эволюционной предыстории. Тем в большей мере важны основные положения теории эволюции для изучения фило­генеза организмов. Перечисленные науки отнюдь не исчерпывают перечень научных дисциплин, причастных к изучению и анализу развития жизни на Земле в прошедшие геологические эпохи. Для понимания видо­вой принадлежности ископаемых остатков и преобразований видов организмов во времени чрезвычайно важны выводы систематики; для анализа смены фаун и флор в геологическом прошлом — данные биогеографии. Особое место занимают вопросы происхождения человека и эволюции его ближайших предков, имеющей некоторые специфические особенности по сравнению с эволюцией других высших животных, благодаря развитию трудовой деятельности и социальности.


Масштабы Геологического Времени

Изучая эволюцию организмов, необходимо иметь представление о ее ходе во времени, о продолжительности тех или иных ее этапов. Историческая последовательность образования осадочных по­род, т. е. их относительный возраст, в данном районе устанавлива­ется сравнительно просто: породы, возникшие позднее, отлагались поверх более ранних пластов. Соответствие относительного возраста пластов осадочных пород в разных регионах можно определить, сопоставляя сохранившиеся в них ископаемые организмы (палеонто­логический метод, основы которого были заложены в конце XVIII — начале XIX в. работами английского геолога У. Смита). Обычно среди ископаемых организмов, характерных для каждой эпохи, удается выделить несколько наиболее обычных, многочисленных и широко распространенных видов} такие виды получили название руководящих ископаемых. Как правило, абсолютный возраст осадочных пород, т. е. проме­жуток времени, прошедший со времени их образования, непосредственно установить нельзя. Информация для определения абсолютного возраста содержится в изверженных (вулканических) породах, которые возникают из остывающей магмы. Абсолютный возраст изверженных пород можно определить по содержанию в них радиоактивных элементов и продуктов их распада. Радиоактивный распад начинается в изверженных породах с момента их кристаллизации из расплавов магмы и продолжается с постоянной скоростью до тех пор, пока все запасы радиоактивных элементов не будут исчерпаны. Поэтому, определив содержание в горной породе того или иного радиоактивного элемента и продуктов его распада и зная скорость распада, можно достаточно точно (с воз­ можностью ошибки около 5%) вычислить абсолютный возраст дан­ной породы. Для осадочных пород приходится принимать приблизительный возраст по отношению к абсолютному возрасту слоев вулканических пород. Длительное и кропотливое изучение относительного и абсолютного возраста горных пород в разных регионах земного шара, потре-бовавшее напряженной работы нескольких поколений геологов и палеонтологов, позволило наметить основные вехи геологической истории Земли. Границы между этими подразделениями соответствуют разного рода изменениям геологического и биологи­ческого (палеонтологического) характера. Это могут быть изменения режима осадконакопления в водоемах, приводящие к формированию иных типов осадочных пород, усиление вулканизма и горообразова­тельные процессы, вторжение моря (морская трансгрессия) благодаря опусканию значительных участков континентальной коры или повышению уровня океана, существенные изменения фауны и флоры. Поскольку подобные события происходили в истории Земли нерегу­лярно, продолжительность различных эпох, периодов и эр различна. Обращает на себя внимание огромная длительность древнейших гео­логических эр (археозойской и протерозойской), которые к тому же не разделены на меньшие временные промежутки (во всяком случае, нет еще общепринятого подрааделения). Это обусловлено в первую очередь самим фактором времени — древностью отложений археозоя и протерозоя, подвергшихся за свою длительную историю значительному метаморфизму и разрушению, стершим существовавшие когда-то вехи развития Земли и жизни. Отложения археойской и протерозойской эр содержат чрезвычайно мало ископаемых остатков организмов; по этому признаку археозой и протерозой объединяют под названием «криптозой» (этап скрытой жизни) противопоставляя объединению трех последующих эр — «фанерозой» (этап явной, наблюдаемой жизни). Возраст Земли определяется различными учеными по-разному, но можно указать на приближенную цифру 5 млрд. лет.


Основные подразделения геологической истории Земли, их абсолютный возраст и прододжительность (в млн. лет)

Геологические эры

Геологические периоды

Геологические эпохи

Абсолютный возраст

Продолжитель­ность


Кайнозойская

Четвертичный

Голоцен(современность)

0,02

0,02




Плейстоцен

1050,5

1,5—2



Неогеновый

Плиоцен

121

10




Миоцен

261

15-17



Палеогеновый

Олигоцон

372

11-13




Эоцен

602

19-20




Палеоцен

673

9-10


Мезозойская

Меловой

Поздномеловая

1103

46—48




Раннемеловая

1375

22—24



Юрский

Поздноюрская

1705

35-40




Среднеюрская и раннею рская

1955

15-20



Триасовый

Позднетриасовая

2055

10-15




Среднетриасовая и раннетриасовая

23010

20—25


Палеозойская

Пермский

Позднопермская и средне-пермская

26010

30-35




Раннепермская

28510

20-25



Каменноуголь­ный (карбон)

Позднекамен-ноугольная и среднекаменноугольная

31010

25-30




Раннекамонноугольная

35010

35—40



Девонский

Позднедевонская

36510

15-20




Среднодсвонская

38510

15-20




Раннедевонс-кая

40510

15—20



Силурийский

Позднесилу-рийская и раннесилурийская

44010

35—45



Ордовикский

Позднеордовикская, среднеордовикская,раннеордовикская

50015

45—65



Кембрийский

Позднекемб-рийская

53015

25-30




Среднекемб-рийская и рап-некембрийская

57015


40-50


Протерозой­ская

Поздний про­терозой (рифей)

Венд

65050

80-120




Поздний рифей

95050

250-350




Средний рифей

135050

350-450




Ранний рифей

160050

200-300


Ранний проте­розой


2600100

900—1100


Археозойская



Более 4000

Более 1400



Примечание. Подразделения протерозойской эры не соответствуют по своему рангу и продолжительности периодам и эпохам эр фанерозоя.

Развитие жизни в криптозое.

Предисловие

Эры, относящиеся к криптозою, — археозойская и протерозой­ская—вместе продолжались более 3,4 млрд. лет; три эры фанерозоя — 570 млн. лет, т. о. криптозой составляет не менее 7/8 всей геологической истории. Однако в отложениях криптозоя сохранилось чрезвычай­но мало ископаемых остатков орга­низмов, поэтому представле­ния ученых о первых этапах развития жиз­ни в течение этих огромных промежутков времени в значительной сте­пени гипотетичны.


Отложения Криптозоя

Древнейшие остатки организмов были найдены в осадочных толщах Ро­дезии, имеющих возраст 2,9—3,2 млрд. лет. Там обнаруже­ны сле­ды жизнедеятельности водорослей (вероятно, сине-зеленых), что убедительно свидетельст­вует, что около 3 млрд. лет назад на Земле уже существовали фотосинтезирующие организмы — водоросли. Очевидно, появление жизни на Зем­ле должно было произойти значи­тельно раньше,— может быть, 3,5— 4 млрд. лет назад. Наиболее из­вестна среднепротерозойская флора (нитчатые формы длиной до несколь­ких сотен микрометров и толщиной 0,6—16 мкм, имеющие различное строение, одноклеточные микроорганизмы(Рис.1), диаметром 1—16 мкм, также различного строения), остатки которой были обнаружены в Канаде —в кремнистых сланцах на северном бе­регу озера Верхнего. Возраст этих отложений составляет около 1,9 млрд. лет.

В осадочных породах, образовавшихся в промежутке времени между 2 и 1 млрд. лет назад, часто встречаются строматолиты, что говорит о широком распространении и активной фотосинтезирующей и рифостроительной деятельности сине-зеленых водорослей в этот период.

Следующий важнейший рубеж в эволюции жизни документируется рядом находок ископаемых остатков в отложениях, имеющих возраст 0,9—1,3 млрд. лет, среди которых найдены прекрасной сохран­ности остатки одноклеточных организмов размером 8—12 мкм, в ко­торых удалось различить внутриклеточную структуру, похожую на ядро; обнаружены также стадии деления одного из видов этих одноклеточных организмов, напо­минающие стадии митоза — способа деления эукариотических (т. е. имеющих ядро) клеток.

Если интерпретация описанных ископаемых остатков правильна, это означает, что около 1,6—1,35 млрд. лет назад эволюция организ­мов прошла важнейший рубеж — был достигнут уровень организации эукариот.

Первые следы жизнедеятельности червеобразных многоклеточных животных известны из позднерифейских отложений. В вендское время (650—570 млн. лет назад) существовали уже разнообразные живот­ные, вероятно, принадлежавшие к различным типам. Немногочисленные отпечатки мягкотелых вендских животных известны из разных районов земного шара. Ряд интерес­ных находок был сделан в позднепротерозойских отложениях на тер­ритории СССР.

Наиболее известна богатая позднепротерозойская ископаемая фауна, обнаруженная Р. Сприггом в 1947 г. в Центральной Австралии. Исследовавший эту уникальную фауну М. Глесснер считает, что она включает примерно три десятка видов очень разнообразных многоклеточных животных, относящихся к разным типам (Рис. 2). Большинство форм принадле­жит, вероятно, к кишечно-полостным. Это медузоподобные организмы, вероятно «парившие» в толще воды, и прикрепленные к морскому дну полипоидные формы, одиночные или колониальные, напоминающие современных альционарий, или морские перья. Замечательно, что все они, как и другие животные эдиакарской фауны, лишены твердого скелета.

Кроме кишечно-полостных, в кварцитах Паунд, вмещающих эдиакарскую фауну, найдены останки червеобразных животных, причисляемых к плоским и кольчатым червям. Некоторые виды организмов интерпре­тируются как возможные предки членистоногих. Наконец, имеется це­лый ряд ископаемых остатков неизвестной таксономической принад­лежности. Это указывает на огромное распространение фау­ны многоклеточных мягкотелых животных в вендское время,

Поскольку вендская фауна столь разнообразна и включает довольно высокоорганизованных животных, очевидно, что до ее возник­новения эволюция продолжалась уже достаточно долго. Вероятно, многоклеточные животные появились значительно рань­ше — где-то в промежутке 700—900 млн. лет назад.


Резкое Увеличение Богатства Ископаемой Фауны

Граница между протерозойской и палеозойской эрами (т. е. меж­ду криптозоем и фанерозоем) отмечается поразительным измене­нием в составе и богатстве ископаемой фауны. Внезапно (другого слова здесь, пожалуй, и не подберешь) после толщ верхнего протерозоя, почти лишенных следов жизни, в осадочных породах кембрия (первого периода палеозойской эры), начиная с самых нижних горизонтов, появляется огромное разнообразие и обилие остатков ископаемых организмов. Среди них остатки губок, плеченогих, моллюсков, представителей вымершего типа археоциат, членистоногих и других групп. К концу кембрия появляются почти все известные ти­пы многоклеточных животных. Этот внезапный «взрыв формообразо­вания» на границе протерозоя и палеозоя — одно из самых загадоч­ных, до сих пор полностью не разгаданных, событий в истории жизни на Земле. Благодаря этому начало кембрийского периода является столь заметной вехой, что нередко все предшествующее время в геологической истории (т. е. весь криптозой) именуют "докембрием.

Вероятно, обособление всех основных типов животных произошло в верхнем протерозое, в промежутке времени 600—800 млн. лет назад. Примитивные представители всех групп многоклеточных животных были небольшими лишенными скелета организмами. Продолжавшееся накопление кислорода в атмосфере и увеличение мощности озонового экрана к концу протерозоя позволили животным, как указано выше, увеличить размеры тела и приобрести скелет. Организмы получили возможность широко расселиться на малых глубинах различных водоемов, что повело к значительному повышению разнообразия форм жизни.

Жизнь в палеозойской эре.

Предисловие

Итак, на рубеже протерозоя и па­леозоя произошел кажущийся или действительный взрыв формообра­зования, который привел к появле­нию в палеонтологической летописи кембрийского периода представите­лей почти всех известных типов ор­ганизмов. Палеозойская эра про­должалась свыше 300 млн. лет. В течение этого времени на Земле про­изошли значительные изменения фи­зико-географических условий: рель­ефа суши и морского дна, общего соотношения площади материков и океанов, положения континентов, климата и многих других факторов. Эти изменения неизбежно должны были сказываться на развитии жиз­ни.


Арена Жизни в Палеозое

На протяжении палеозоя море неоднократно наступало на конти­нент, заливая опускавшиеся участки континентальных платформ (мор­ские трансгрессии), и вновь отсту­пало (морские регрессии). В первой половине палеозойской эры на Земле господствовал в целом теплый климат: средняя температура поверхности Земли была сравнительно высокой, а перепад температур между полюсами и экватором невелик. Теплый период в конце палеозоя (начиная со второй половины карбона) сменился холодным, с более низкой средней темпе­ратурой и значи­тельной разницей температур между полюсами и экватором. В позднем карбоне и ранней перми мощный ледниковый щит покрывал Антарктиду, Австралию, Индию, южные части Африки и Южной Америки — это было время великого оледенения Гондваны. Северный полюс в палеозое находился и океане.


Жизнь в Морях и Пресных Водоемах Палеозоя

Вероятно, в кембрийском периоде основные проявления жизни, как и в докембрии, были сосредоточены в морях. Однако организмы уже заселили все разнообразие доступных в море местообитаний, вплоть до прибрежного мелководья, и, возможно, проникли и в прес­ные водоемы.

Водная флора была представлена большим разнообразием водорослей, основные группы которых возникли еще в протерозое. Теплые моря кембрийского пе­риода были обильно населены пред­ставителями различных групп жи­вотных. Наиболее богата была дон­ная фауна неглубоких морей, при­брежных отмелей, заливов и лагун: на морском дне жили разнообразнейшие прикрепленные живот­ные: губки, археоциаты, кишечнополостные (одиночные и колониальные представители различных групп по­липов), стебельчатые иглокожие, плеченогие и др. Большинство из них питалось различными микроорганиз­мами (простейшие, одноклеточные водоросли и т. п.), которых они раз­личными способами отцеживали из воды. Такое фильтрационное пита­ние было широко распространено среди древних животных, сохрани­лось оно и у многих современных групп. Некоторые колониальные ор­ганизмы, обладавшие известковым скелетом, возводили на дне моря ри­фы, подобно современным коралло­вым полипам.

Другие группы прикрепленных морских организмов, также пере­живших пышный расцвет в палеозойской эре, сохранялись до наших дней в лице немногочисленных видов. Таковы, например, стебель­чатые иглокожие, представленные в палеозое семью классами, из которых до наших дней дожили лишь морские лилии. Сходная судьба была и у плеченогих— своеобразных прикрепленных животных, снабженных двустворчатой раковиной (рис. 13) и внешне напоминаю­щих двустворчатых моллюсков, но резко отличающихся от них внут­ренним строением. Замечательно, что с кем­брийского периода до наших дней просуществовал род брахиопод лингула, который, судя по раковине, сохранил строение практически без изменений в течение свыше 500 млн. лет. Это один из наиболее ярких и удивительных примеров эволюционного кон­серватизма.

С морским дном были тесно связаны и многие другие группы животных. Некоторые приспособились к роющей жизни в толще дон­ных осадков (различные черви, в том числе полухордовые; эти жи­вотные не имели твердого скелета и не сохранились в палеонтологи­ческой летописи палеозоя, но, несомненно, возникли еще в докембрии).

Среди водорослей и кораллов по морскому дну медленно ползали свободноживущие иглокожие (морские звезды, офиуры, голотурии и др.) и моллюски, основные группы которых известны начиная с кембрия. Свободноживущие игло­кожие возникли, вероятно, от прикрепленных предков, унаследовав от них внешнюю радиальную симметрию тела. Организация же мол­люсков сложилась в процессе приспособления к питанию различными донными обрастаниями и остатками погибших организмов, пищей обильной и легко доступной. Такой способ питания не требовал боль­шой подвижности. А для защиты мягкого тела у моллюсков развилась прочная и тяжелая раковина, еще более ограничившая их подвиж­ность. Но одна из групп моллюсков, вопреки общей эволюционной тенденции своего типа к развитию малоподвижных донных форм, уже в кембрии сумела перейти к освоению свободного плавания. Это были первые головоногие — наутилоидеи, или кораблики, дожившие в лице единственного рода (Nautilus pompilius) до наших дней. Раковина корабликов преобразовалась в гидростати­ческий аппарат, позволяющий этим моллюскам изменять свою пла­вучесть, поднимаясь или опускаясь в толще воды без мышечных уси­лий.

Среди палеозойских водных членистоногих были и хищники, из которых особенно выделяются эвриптериды, родственные современным скорпионам, но достигавшие длины около 2 м (Рис. 3). Это были самые крупные членистоногие, когда-либо существовавшие на Земле. Эвриптериды известны начиная с ордовика. Они достигли наибольшего расцвета в силуре и первой половине девона, но уже с середины девона число их видов начинает сокращаться. В ранней перми эти крупные хелицеровые исчезают. Возможно, судьба эвриптерид опре­делилась тем, что примерно с середины девона в роли крупных вод­ных хищников с ними начинают конкурировать различные группы хищных рыб.


Превосходство Позвоночных Рыб над Членистоногими

Позвоночные рыбы оказались лучше приспособленными к быстрому плаванию в толще воды. Проблема локомоции у древних позвоночных была решена принципиально иначе, чем у членистоногих. У позвоночных развитие внутреннего: осевого скелета (хорды, а затем позвоночника) позволило использо­вать практически всю мускулатуру тела для создания силы поступа­тельного движения посредством волнообразного изгибания тела и мощных ударом основного движителя—хвостового плавника. У членистоногих хитиновый наружный скелет не создавал таких предпосылок, а многочисленные членистые конечности были приспособлены в первую очередь для движения по дну, их использование для плавания менее эффективно.

После развития челюстей позвоночные получили преимущество перед крупными членистоногими и в приспособлении для нападе­ния и защиты: внутренние челюсти позвоночных, расположенные в толще приводящих их в движение мышц, механически прочнее и надежнее, чем наружные хватательные приспособления и челюсти члопистоногих, возникшие из членистых конечностей. Благодаря этим преимуществам позвоночные заняли доминирующее положение среди активно плавающих (нектонных) жи­вотных с крупными размерами тела. Членистоногие оказались лучше приспособленными среди относительно мелких организмов; громад­ное большинство членистоногих имеет небольшие размеры. Зато в этой сфере членистоногие развили ни с чем не сравнимое разнообра­зие мелких форм, поражающее воображение количеством видов (в современной фауне - свыше 105 000 000 видов!). Позвоночные появляются в палеонтологической ле­тописи начиная с нижнего ордовика.

Общие предки позвоночных и низших хордовых неизвестны; ве­роятно, эти животные еще не обладали твердым скелетом и имели мало шансов для успешной фоссилизации. О происхождении хордо­вых выдвигалось много различных гипотез. Непосредственные предки хордовых, вероятно, пере­шли к активному плаванию в толще воды. Приспособления к нектонному образу жизни создали предпосылки для дальнейшей прогрес­сивной эволюции этой группы. Активное плавание требовало усовершенствования нервной системы, рецепторов и локомоторной системы. С этим связано развитие мышц тела и возникновение уни­кального внутреннего скелета — хорды. Кроме того, в хорде имеются сократимые волокна, подоб­ные мышечным; их локальное сокращение повышает жесткость дан­ного участка осевого-скелета и способствует быстрому выпрямлению соответствующего сегмента тела.

Древнейшие позвоночные были рыбообразными животными, ли­шенными челюстей, с телом, защищенным в той или иной степени панцирем. Их панцирь был образован крупными щи­тами и более мелкими щитками и пластинками, состоящими из трех слоев примитивных костных тканей (в том числе и денти­на). Голову этих животных сверху и сбоку (а иногда и снизу) защищал сплошной головной щит с отверстиями для глаз, непарного органа обоняния и так называемого «теменного глаза» (светочувствительно­го дорсального придатка промежуточного мозга, игравшего у примитивных позвоночных важную роль в регуляции различных функций организма в соответствии с суточным и годовым циклами и с уровнем освещенности внешней среды). Задняя часть тела была покрыта не­большими щитками, не препятствовавшими изгибанию этого отдела туловища и работе хвостового плавника. Настоящих парных конечностей у панцирных бесчелюстных, видимо, еще не было, по по бокам тела позади головы имелась пара покрытых чешуями придатков или плавниковых складок.

Однако более прогрессивными группами позвоночных, оказались челюстноротые. Челюстноротые по­ явились в палеонтологической лето­писи в позднем силуре; в девоне существовали уже разнообразные группы всех классов рыб. Их общие предки пока остаются неизвестными. Основные эволюционные дости­жения челюстноротых, обеспечившие им преобладание над бесчелюстными, включают развитие челюстей, настоя­щих парных конечностей и усовер­ шенствование жаберного аппарата. У челюстноротых жаберные дуги расчленились на подвижные от­носительно друг друга отделы, так что каждая дуга мог­ла складываться, как гармошка, и затем вновь расправляться с по­мощью сокращения специальных мышц. В результате возник эффективный всасывательно-нагнетательный жаберный насос, позволив­ший значительно усилить поток воды, омывающий жабры. Одновре­менно возникли предпосылки (преадаптации) для использования передних жаберных дуг при схватывании и удержании добычи, т. е. в роли челюстей. У бесчелюстных также возник насос для вентиляции жабр, но устроен он совершенно иначе (и работает менее эффективно), чем у челюстноротых. В такой конструкции нет преадаптаций для развития челюстей. Весьма вероятно, что их отсутствие сыграло немаловажную роль в вымирании остракодерм, оказавшихся неспособ­ными выдержать «пресс» со стороны активных хищников— челюст­норотых. Современные бесчелюстные (круглоротые) насчитывают всего лишь около 50 видов против примерно 20 000 видов различных групп рыб.

Древнейшие представители всех групп рыб, обитавшие в морях и пресных водоемах раннего и среднего девона, были одеты более или менее сильно развитым костным панцирем, особенно мощным у так называемых панцирных рыб — плакодерм. Панцирь плакодерм (Рис. 5) состоял из двух подвижно сочлененных друг с другом частей, одна из которых защищала голову, а другая — переднюю часть туловища.

У плакодерм не было настоящих зубов; их заменяли острые бивнеобразные выступы челюстных костей. Среди плакодерм были мелкие придонные формы, примером которых может служить позднедевонская динихтис, у которой лишь одетая панцирем передняя часть тела имела длину до 3,2 м. Плакодермы вымерли в раннем карбоне, уступив место более прогрессивным группам рыб. Другой примитивной группой палеозойских рыб были акантодии. Тело акантодий покрывали многочислен­ные костные пластинки и крупные чешуи; имелись окостенения и во внутреннем скелете. Для акантодий характерно сохранение ряда очень примитивных особенностей. У них еще не установилось обыч­ное для большинства позвоночных число пар конечностей; по бокам тела (рис. 6) тянулся ряд плавников (до 7 пар), возникших, вероятно, в результате дифференциации первоначально цельных плавниковых складок. В дальнейшем средние плавники в этом ряду, расположен­ные ближе к центру тяжести тела и поэтому малоэффективные и как рули глубины, и как стабилизаторы движения, подверглись редукции, так что сохранились лишь передняя и задняя пары. Акантодий обитали в прес­ных и морских водоемах с позднего силура до середины пермского периода, когда эта древняя группа подверглась вымиранию.


Появление всех подклассов костных рыб

В первой половине девона существовали уже и представители всех подклассов костных рыб: лучеперых , двоякодыщащих и кистеперых . Хоановьте рыбы (Два последних подкласса) вели в основном придонный, скрытный образ жиз­ни, охотясь в гуще растительности. Кистеперые были хищ­никами, подстерегавшими добычу в укрытиях, а двоякодышащие приспособились к питанию малоподвижными животными с твердыми панцирями (моллюски, ракообразные). Хоановые рыбы, сформировались во внутриконтинентальных пресных водоемах, т.е. мелководных озерах, хорошо прогреваемых солнцем, обильно заросших водной растительностью и отчасти заболоченных. В воде таких озер из-за гниения растений нередко возникал дефицит кислорода. Это время и было «золотым веком» хоановых рыб, приобретших ряд важных приспособлений к жизни в таких водоемах. Важнейшим из них было развитие лeгкиx — дополнительного органа дыхания, по­зволявшего использовать кислород воздуха при его недостатке в воде.


Появление обильной наземной флоры

Появилась и обильная наземная флора, имевшая характер густых влажных тро­пических лесов. Среди древовидных растений выделялись представители плаунообразных— лептадодендроды, достигавшие в высоту 40 и в диаметре до 2 м у основания, и сигиллярии, достигавшие 30-метровой высоты. Среди этих гигантов палеозойского леса высились и хвощеобразные пирамидальные каламиты с членистым стеб­лем и мутовками мелких жестких листьев. Очень обильны были раз­личные папоротники, как ползучие, так и древовидные, хотя и не достигавшие такой высоты, как плаунообразные, и составляющие вто­рой ярус лесной растительности и подлесок.

Заселенние суши растениями положило начало почвообразо­ванию с обогащением минеральных субстратов органическими ве­ществами. К этому времени (силур — девон) относится и возникновение наиболее древних толщ горючих ископаемых, образующихся при неполном разложении скоплений растительных остатков. Особо сложной для растений на суше стала проблема осуществления полового процесса: в воде подвижные мужские гаметы лег­ко достигали яйцеклеток, тогда как в воздушной среде при неподвижно­сти растений встреча гамет невоз­можна без специальных приспособле­ний, обеспечивающих их перенос от одного растения к другому. Растения этого времени представлены разнообразными птеридоспермами, а также новой группой — кордаитами. Кордаиты были высокими деревьями, ство­лы которых напоминали хвойные, но высоко расположенные кроны были образованы крупными (длиной до 1 м) цветообразными или лентовидными листьями. В древесине всех этих деревьев не имелось годичных колец, что говорит об отсутствии четко выраженной сезонности климата. Наличие густых лесов тропического характера вдоль морских побережий, изрезанных лагунами, пересеченных дельтами рек и на больших заболоченных территориях, создавало предпосылки для интенсивного углеобразования. Мощные толщи каменных углей, сформировавщиеся в это время в разных районах земного шара, дали название каменноугольному периоду.


Появление животных на суше

По мере заселения суши растениями появились предпосылки для освоения наземной среды обитания животными. Скорее всего, пер­выми среди них были какие-то мелкие растительноядные формы, су­ществовавшие в силурийском периоде, но не оставившие следов в палеонтологической летописи (во всяком случае, их остатков пока не обнаружено). Как отметил М. С. Гкляров, для многих групп беспозвоночных животных освоение суши началось с использования почвы как промежуточной среды обитания, в которой многие условия (повышенная влажность, степень плотности) были в ка­кой-то мере близки к таковым водной среды. В почве можно исполь­зовать многие приспособления, сложившиеся в водной среде, при относительно небольшой их модификации (локомоторный аппарат, органы дыхания и др.). Вероятно, этим путем на сушу из водоемов проникли различные группы червей, которые в основном и остались почвенны­ми обитателями. Жизнь в почве и разнообразных близких к ней местообитаниях характерна для наиболее примитив­ных современных групп наземных беспозвоночных. Приспособление животных к передвижению на суше требовало, во-первых, совершенствования локомоторного аппарата, который должен обеспечивать передвижение в условиях возросшей по сравнению с водой силой тяжести; во-вторых, равичня органов дыхания, способ- ийх усваивать кислород воздуха и избавлять организм от углекис­лого газа; в-третьих, формирования приспособлений, препятствую­щих гибели организма от обезвоживания, очень опасного в сухом воздухе (при жизни в почве эти последние приспособления еще не требуются). Они включают развитие таких покровов тела, которые максимально снижают потери воды через испарение, а также совершенствование органов выделения, ко­торые должны выводить из организма секреты в предельно обезвоженной, форме.


Появление крылатых насекомых

Во второй половине раннекарбоновой эпохи появились наделен­ные крыльями высшие насекомые. Вероятно, предки крылатых насекомых перешли к лазающей жизни на стволах и в кронах деревьев. Для облегчения планиро­ вания при падениях и прыжках у этих животных служили уплощенные выступы стенки тела на грудних сегментах. Из этих неподвижных придатков в процессе длительной приспособительной эволюции естественный oт6op сформировал удивительный в своём совершенстве летательный аппарат. К концу карбона уже существовали разнообразные группы летающих насекомых, некоторые из них дожили до современности (стрекозы, тараканы, скорпионницы). Некоторые виды стрекоз тогда достигали 1 м. в размахе крыльев. (Рис. 7)

Вслед за беспозвоночными к освоению наземной среды обитания приступили и позвоночные. Их вы­ход на сушу мог осуществиться лишь после появления там соответ­ствующей пищевой базы (достаточно обильной фауны наземных беспозво­ночных). Эти крупные животные не могли использовать почву как про­межуточную среду между водой и сушей. Поэтому освоение суши позвоночными могло происходить толь­ко в условиях влажного и теплого климата, наиболее благоприятного для животных, физиология ко­торых во многом еще подобна таковой рыб, хотя ком­плекс необходимых основных предпосылок (преадаптаций) для пе­рехода к наземной жизни должен был сформироваться у предков наземных позвоночных еще во время обитания в водоемах.


Расцвет Амфибий

В карбоне начинается расцвет древних амфибий, представлен­ных в позднем палеозое большим разнообразием форм которых условно объединяют под названием стегоцефалов, т. е. «покрытоголовых». Этот термин, не имеющий ныне таксономическою значения подчеркивает характерную особенность данных животных, голова которых сверху и с боков была защищена унаследованным от рыб сплошным костный панцирем (так называемый стегальный череп), пронизанным лишь отверстиями ноздрей, глазниц и «теменного глаза».

Наиболее известной из групп стегоцефалов являются лабиринтодонты, к числу которых принадлежат и ихтио-стеги. Их название связано с любопытной особенностью строения зу­бов, также унаследованной от кистеперых рыб: эмаль и дентин обра­зовывали многочисленные складки, так что на поперечном шлифе возникала картина, напоминающая лабиринт. Лабиринтодонты в позднем палеозой были одной из наиболее распространенных и обильных видов групп позвоночных. К ним принадлежали и мелкие и крупные (длиной более 1,5 м) формы. В карбоне преобладали виды со слабо развитыми конечностями и длинным телом, которые, вероятно, обитали в многочисленных тогда болотах.

В пермское время появились крупные крокодилообразные стегоцефалы с большой уплощенной головой, а также мелкие виды с лучше развитыми конечностями и уко­роченными туловищем и хвостом. Эти последние, скорее всего, жили преимущественно на суше, питаясь различными наземными бес­позвоночными, хотя, как и все земноводные, нуждались в повышен­ной влажности воздуха и близости водоемов для откладки икры. Как считают некоторые авторы, мелкие лабиринтодонты, державшиеся по берегам водоемов и спасавшиеся от наземных врагов прыжками в воду, стали предками бесхвостых земноводных, возникших вероятно, в позднепермское время. Остальные два отряда современных амфибий: хвостатые и безногие, или червяги, произошли, по-видимому, от дру­гих групп стегоцефалов, которых объединяют в подкласс лепоспондильных. Среди лепоспондильных, помимо лизорофов — возможных предков указанных современных групп, интересны своеобразные формы с крайне удлинённым змеевидным те­лом, лишенным конечностей (аистоподы), а также при­чудливые пектридии, одно из семейств которых отлича­лось поразительной структурой черепа (его задние углы непомерно разрастались вбок и назад в виде длинных конических выростов). От примитивных лабиринтодонтов в самом раннем карбоне (а может быть, даже до конца девона) обособилась группа антракозавров, также обитавших в прибрежной зоне водоемов. Однако среди представителей этой группы очень рано наметилась тенденция к освоению наземных местообитаний. Как и в большинстве случаев, эта тенденция независимо и параллельно разви- валась в разных филетических линиях, в каждой из которых постепенно формировались во многом сходные приспособления к жизни на суше. Антракозавров и тех из их потомков, которые сохранили, несмотря на наземный образ жизни, общий уровень организации и характерные черты размножения и онтогенеза земноводных (с от-кладкой икры в водоемах и водными личинками, имеющими жабры), объединяют в подкласс батрахозавров. К батрахозаврам принадлежат сеймурии, котлассии и родственные им формы, существовавшие в пермском периоде. Сеймурии долгое время считали не земноводными, а пресмыкающимися, так близки они во многих отношениях (по строению черепа, позвоночника и конечностей) к настоящим реп­тилиям. Однако позднее были обнаружены остатки личиночных форм этих животных, имевших следы каналов сейсмосенсорных органов на костях черепа и, следовательно, обитавших в воде. От каких-то примитивных батрахозавров (пока еще неизвестных) в раннем карбоне возникли настоящие рептилии. P. Кэррол считает, что непосредственные предки пресмыкающихся могли быть близки по основным особенностям к позднекарбоновым гефиростегам, которые, однако, существовали слишком поздно, чтобы быть действительными предками рептилий. Возможно, гефиростеги были реликтовой группой, сохранившей ряд архаических особенностей строения, характерных для раннекарбоновых пред­ков пресмыкающихся. Настоящие рептилии известны начиная со среднего карбона. Е. Одеон указал на близкое совпадение времени появления пресмы­кающихся и разнообразных групп высших насекомых — птеригот. Отметив, что все наиболее древние рептилии были относительно мел­кими насекомоядными животными, Е. Олсон пришел к выводу, что формирование пресмыкающихся как группы было тесне связано с использованием новой богатой пищевой базы, возникшей на суше с появлением насекомых.

Вероятно, уже в карбоне у рептилий сформировался целый ком­плекс приспособлений, позволивших им и их потомкам стать в пол­ной мере наземными животными. Важнейшим из этих приспособле­ний, которое сделало возможными многие другие существенные изменения организации, было развитие эффективного механизма вен­тиляции легких посредством движений грудной клетки. Оно сде­лало ненужным кожное дыхание, которое у земноводных является необходимым дополнением легочного. (Из-за несовершенства венти­ляции легких, где скапливается избыток углекислого таза, земноводные нуждаются в выведении последнего через кожу).

Поэтому в коже рептилий стало возможно усиление процессов ороговения эпидермиса, защищавшего организм от постоянной потери влаги через покровы (неизбежной при кожном дыхании у земноводных) и риска гибели в сухом воздухе от обезвоживания. После этого пресмыкающиеся получили возможность заселить практически любые местообитания на суше, вплоть до безводных пустынь. После ликвидации кожного дыхания у рептилий стало возможно разделение в сердце артериаль­ной, поступающей из легких, и венозной, идущей от всех остальных органов, крови, что также было невозможно для земноводных. (У них от кожи кровь поступала в правое предсердие, а от легких — в левое, и если бы эти потоки крови в желудочке сердца разделить, то кожное дыхание стало бы невозможно использовать.) Все эти важней­шие достижения рептилий наряду с целым рядом усовершенствований скелета создали важнейшие пред­посылки для полного овладения наземной средой обитания. Одновременно у древнейших рептилий возник второй комплекс приспособлений, избавивших от связи с водоемами все важнейшие процессы, связанные с размножением. Это было появление внутрен­ него осеменения вместо характерного для земноводных наружного: формирование крупных яиц, обильно снабженных питательными веществами (желтком) и способных обеспечить длительное развитие зародыша; образование плотных лицевых оболочек, защи­щающих яйцо на суше от обезвоживания и механических поврежде­ний; наконец, возникновение особых зародышевых оболочек, обеспечивающих благоприятную среду для развития зародыша, осуществляющих газообмен и накапливающих экскреты (из-за невозможности их выведения во внешнюю среду). По признаку наличия этих зародышевых оболочек высшие классы наземных позвоночных объединяются в группу амниот, противопоставляемую низшим позвоночным — анампиям. Древнейшие и наиболее примитивные пресмыкающиеся принад­лежали к подклассу котилозавров (Рис.8). Название «котилозавр» подчеркивает характерную особенность черепа этих жи­вотных, защищающего голову сплошным костным панцирем сверху и с боков, как у стегоцефалов, но более высокого и узкого, чем у по­следних (и несколько напоминающего у некоторых котилозавров при взгляде сверку чашу или кубок, откуда и название: греч. kotylos — чаша, кубок).


Жизнь в Позднем Палеозое

Пермский пе­риод стал временем расцвета древних пресмыкающихся, быстро осваивавших все новые местообитания, вытесняя хуже приспособленных конкурентов из числа стегоцефалов и батрахозавров, с запозданием пытавшихся закрепиться на суше. Котилозавры разделились на несколько основных эволюционных стволов, первоначальная дифференциация которых была связана, ве­роятно, с освоением разных способов питания и различных местообитаний. От примитивных насекомоядных форм, как уже упоминалось, возникли растительноядные рептилии и крупные хищники. Самыми большими котилозаврами были растительноядные парейазавры (рис. 9), известные из средне- и верхнепермских отложений Европы и Африки. Эти животные, достигавшив в длину около 3 м, имели широкое массивное тело и крупный тяжелый череп с поразительно маленькой полостью, вмещавшей головной мозг. Наружная поверхность толстых черепных костей была покрыта своеобразным бугор­чатым рельефом из приросших к ним остеодерм (вторичных кожных окостенении, вообще часто встречающихся у рептилий); по бокам черепа выступали назад и в стороны толстые бугристые, иногда даже «рогатые» костные пластины — «щеки» (отсюда название этих животных: Pareiasauria — щекастые ящеры). Парейазавры были, вероятно, неповоротливы и медлительны; от нападений хищников их в какой-то мере защищал панцирь из толстых костных бляшек — остеодерм, рядами сидевших в коже. Судя по строению зубов парей­азавров (довольно слабых, с плоской листовидной коронкой, имевшей зазубренные края), их пищей служили какие-то сочные и мягкие растения, возможно водные. Не исключено, что парейазавры обитали по берегам водоемов и болот, охотно забираясь в воду, и по образу жизни были своеобразными палеозойскими бегемотами. Самые крупные хищники пермского времени принадлежали к подклассу звероподобных, или синапсидных, рептилий. У этих пресмыкающихся в височной области черепа для его облегчения и предоставления необходимого пространства сокращению мощных челюстных мышц возникла одна пара широких отверстий, или височных окон, пронизавших наружный черепной панцирь и ограниченных по бокам скуловыми дугами (рис. 10). Та­кой тип черепа, называемый синапсидным, дал одно из названий под­классу. Самими древними звероподобными рептилиями были пеликозав­ры, появившиеся уже в позднем карбоне. Их расцвет приходится на раннепермское время, когда многие их представители достигали крупных размеров (до 2 м). Некоторые пеликозавры (диметродон, эдафозавр и др.) имели интересное приспособление: гипертрофированные остистые отростки спиновых позвонков у них поднимались над позвоночником почти на 1 м, а у эдафозавра (рис. 11) на этих отростках имелись еще и ко­роткие боковые выросты. Вероятно, между ними была натянута склад­ка кожи, образующая огромный продольный гребень, называемый «спинным парусом». Может быть, эта складка играла роль в термо­регуляции животного, увеличивая поверхность тела, что могло в одних ситуациях усиливать теплоотдачу, в других же — содейство­вать повышению температуры тела при обогревании в солнечных лучах (повышение температуры тела путем инсоляции присуще всем современным рептилиям).


Появление Терапсид

Большинство пеликозавров вымерло уже к середине пермского периода, вероятно, не выдержав конкуренции с представителями возникшей от пеликозавров более прогрессивной группы звероподоб­ных рептилий — терапсид. В позднепермской эпохе терапсиды стали доминирующей группой пресмыкающихся. Этому способствовал целый ряд присущих им прогрессивных особенностей, в частности усовершенствование наземной локомоции. У большин­ства рептилий сохранилось примитивное положение конечностей, при котором плечо и бедро располагаются в целом горизонтально, локоть и колено направлены вбок, и тело животного удерживается на весу усилиями мышц конечностей (отсюда характерное для рептилий пресмыкание), когда брюхо при движении лишь незна­чительно приподнимается над субстратом). У высших терапсид лок­тевой сустав повернулся назад, коленный — вперед, бедро и плечо (и конечности в целом) оказались расположенными под телом, высоко приподнявшимся над субстратом; для поддержки тела при этом не требуется столь значительной работы мышц, как у типичных пресмы­кающихся.

Терапсиды были очень разнообразны: среди них были и хищники различных размеров, вплоть до трехметровых иностранцевий (рис. 12) с клыками длиной более 10 см (своего рода сабле­зубых тигров пермского периода), и растительноядные животные, иногда имевшие причудливые и загадочные особенности строения. В некоторых филогенетических стволах рептилий продолжалось совершенствование приспособлений к насекомоядности, которая была, вероятно, самой примитивной формой питания пресмыкающихся. Это направление эволюционных преобра­зований привело к появлению небольших и проворных ящерицеобразных животных, причем сходный тип строения сформировался параллельно в нескольких независимых эволюционных линиях. В других группах насекомоядных рептилий произошли некоторые прогрессивные изменения организации, выразившиеся, в частности, в усовершенствовании черепа. Эти животные, давшие начало двум важнейшим подклассам рептилий — лепидозаврам и архозаврам,— приобрели удлиненные челюсти, удобные для схватывания мелкой подвижной добычи. В височной области у них появилась сначала одна, а затем и вторая пара височных окон, расположенных одно над другим и разделенных тонким костным мостиком (верхний височной дугой). Так возник диапсидный тип черепа (рис. 10), легкая и ажурная конструкция которого позволила вновь усовершенствовать подвижность верхней челюсти и некоторых связанных с ней костей, древнюю особенность, унаследованную наземными позвоночными от кистеперых рыб. В породах из верхнепермских отложений Южной Африки сохранились остатки первых рептилий, имевших настоящий диапсидный череп — эозухий, наиболее известным представителем которых была янгина. От эозухий возникли настоя­щие ящерицы, у которых в связи с усилением подвиж­ности верхней челюсти редуцировалась нижняя височная дуга, связывавшая в диапсидном черепе задний конец верхней че­люсти с областью челюстного сустава. В результате череп ящериц приобрел легкую ажурную конструкцию (рис. 10). Вероятно, эозухие были также предками высших рептилий, при­надлежащих к подклассу архозавров и оставивших самые яркие страницы в палеонтологической летописи мезозоя.

Мезозойская эра – век рептилий.

Предисловие

После завершения в середине пермского периода оледенения Гондваны климат Земли стал более теплым (Возможно, это было связано с перемещением Южного полюса с конти­нента в Тихий океан). Потепление продолжалось на протяжении мезо­зойской эры, которая в целом была более однообразной в климатическом отношении, чем другие эры фанерозоя.

В мезозое господствовали теп­лые климаты с относительно слабо выраженной климатической зональ­ностью. При отсутствии оледенений температура воздуха и воды в океане была, вероятно, зна­чительно выше современной: на эква­торе на 3—5°, в средних широтах на 10°, а в полярных на 20—40°. В то же время происходили важ­ные изменения рельефа Земли и по­ложения континентов, которые при­вели к формированию в общих чертах существующих ныне континентов и океанов.

Триас — Время Обновления Фауны

Рубеж между пермским и триасовым периодами был отмечен существенными изменениями в характере фауны наземных позвоночных(Рис. 13). В пермское время преобладающими группами пресмыкающихся были звероподобные рептилии и котилозавры, тогда как группы с диапсидным черепом (объединяе­мые иногда под названием «завропсиды») оставались сравнительно немногочисленными. При этом нужно отметить, что высшие звероподобные рептилии обла­дали рядом прогрессивных признаков, отсутствовавших у завропсид (например, были способны к пережевыванию пищи, значительно повы­шавшему степень ее усвоения в кишечнике; вероятно, териодонты имели волосяной покров и т.д.). Победа в борь­бе за существование была достигнута завропсидами, так сказать, во­преки прогрессивным чертам организации териодонтов и, очевидно, основывалась на каких-то важных преимуществах первых.

Английский палеонтолог Памела Робинсон предложила гипотезу, связывающую изменения фауны рептилий в триасе с особенностями физиологии завропсид и звероподобных пресмыкающихся, о которых можно судить по соответ­ствующим характеристикам современных потомков тех и других. Современные завропсиды (в широком смысле этот термин использует­ся для объединения пезвероподобных рептилий, т.е. всех современ­ных групп этого класса, и птиц) характеризуются наличием целого комплекса приспособлений к жизни и условиях жаркого засушливого климата.

Это, во-первых, способность выживать при значительно бо­лее высоких температурах тела, чем это возможно для потомков зве­роподобных рептилий — млекопитающих (многие ящерицы — до 44°С, птицы — до 43°С, млекопитающие — до 39°С). При этом реп­тилии путем инсоляции используют энергию солнечного облучения для повышения температуры тела до оптимального уровня (в связи с этим для них сохраняет значение «черепной глаз», регулирующий различные функции организма в зависимости от интенсивности падаю­щего света).

Во-вторых, у завропсид конечным продуктом их белкового обме­на, выводимым из организма с мочой, является мочевая кислота, тогда как у млекопитающих — мочевина. Мочевая кислота может образовывать перенасыщенные растворы, и поэтому для ее выведе­ния из организма требуется примерно в 10 раз меньше воды, чем для выведения мочевины. Следовательно, выделительная система завро­псид гораздо лучше экономит влагу для организма, чем таковая мле­копитающих.

Логично предположить, что организация завропсид складыва­лась в условиях засушливого и жаркого климата, тогда как зверо­подобные рептилии возникли в местах обитания с более влажным и прохладным климатом. Такие места обитания, вероятно, были ши­роко распространены, особенно на континентах, входивших в состав Гондваны, в эпоху великого оледенения (т. е. до середины пермского периода). К концу пермского времени и в триасе во многих регионах климат становится все более засушливым. За­сушливость климата должна была дать важные преимущества в борьбе за существование тем группам наземных животных, которые обладали большей устойчивостью к действию высоких температур, были способны лучше экономить влагу и с помощью специальных форм поведения могли использовать энер­гию солнечного облучения для достижения оптимальной температуры своего тела. Постольку по всем этим показателям завропсиды существенно превосходили звероподобных рептилий, последние были оттеснены в еще сохранившиеся более прохладные и влажные местообитания. В неблагоприятных условиях, при жесткой конкуренции со стороны завропсид численность терапсид значительно упала и большинство их групп вымерло.

В немногих существовавших в триасе филогенетических ство­лах высших териодонтов продолжались изменения, наметившиеся еще среди пермских терапсид. Общее направление этих эволюционных изменений обозначают иногда термином «маммализация», т. е. разви­тие комплекса признаков, характерных для высших амниот — мле­копитающих. Здесь мы вновь встречаемся с параллельной эволюцией: сходные черты строения независимо возникали в разных линиях териодонтов. Среди этих признаков было постепенное увеличение размеров полушарий переднего мозга, приобретение мягких губ (что делало возможным сосание) и волосяного покрова. По мнению Л. П. Татаринова, начаточные волоски у териодонтов имели осязательную функцию, располагаясь вблизи рта, как специализированные осязательные во­лосы у млекопитающих. Однако П. Эллепбергер описал отпечатки волос на следах, вероятно, оставленных ка­ким-то высших териодонтом. Эти ископаемые следы были обнаружены в отложениях нижней части среднего триаса. Поэтому имеются основания считать, что волосяной покров был развит у териодонтов уже на всем теле, как у млекопитающих, и, вероятно, имел ту же основ­ную функцию, как и у последних, т. е. служил для теплоизоляции (Эта его роль понятна, если принять гипотезу о возникновении и раз­витии звероподобных рептилий в прохладных местообитаниях).

Цинодонтов продолжалось совершенствование механизма пережевывания пищи с развитием окклюзии (смыкания коронок верхних нижнечелюстных зубов в щечной области) и продольных и попереч­ных движений нижней челюсти. Для обеспечения этих движений произош­ли соответствующие перестройки че­люстных мышц(Рис. 14), сыгравшие важную роль в дальнейшей эволюции челюст­ного аппарата. Механически наиболее благоприятное расположение челюст­ных мышц было достигнуто при раз­растании зубной кости нижней челю­сти назад и вверх, с развитием высо­кого венечного отростка, к которому прикреплялась височная мышца. При этом задние кости нижней челюсти подверглись редук­ции. Гипертрофия задней части зуб­ной кости привела к возникновению ее контакта с чешуйчатой костью че­репа. Между двумя этими костями по­явилась суставоподобная связь, кото­рая оказалась механически более эффективной опорой и осью враще­ния для нижний челюсти, чем первич­ный челюстной сустав. Так возник вторичный челюстной су­став, присущий среди всех позво­ночных только млекопитающим и ставший поэтому важнейшим диаг­ностическим признаком последних. Редуцированные кости первичного че­люстного сустава, освободившиеся от прежней функции, вошли в состав цепи косточек среднего уха в каче­стве двух наружных ее элементов (наковальни и молоточка), что стало еще одной характерной особенностью млекопитающих, обеспечившей более тонкую слуховую чувствительность в области звуков высокой частоты.

Наиболее древние ископаемые остатки млекопитающих, и зверей, известны из верхнетриасовых отложений. Это были небольшие хищные животные, вероятно, питавшиеся насекомыми и различными мелкими позвоночными (Рис. 15). По всей вероятности, у них уже существовало выкармливание молоди молоком поскольку оно присуще всем современным группам млекопитающих. Интересно, что млечные железы возникли у древних млекопитающих из видоизмененных потовых желез. Холден высказал предположение, что первоначальной. функцией млечных желез было не столько выкармливание, скол «выпаивание» детенышей, т. е. снабжение их необходимой влагой и солями; дефицит влаги был особенно опасен для новорожденных детенышей млекопитающих в условиях засушливого климата. С по способу развития современных однопроходных, наиболее примитивных среди ныне живущих млекопитающих, древнейшие звери были яйцекладущими, которые высиживали кладку или вынашивали яйца в специальной сумке на животе.

В конце триаса млекопитающие уже были довольно разнообразны и принадлежали к нескольким обособленным группам: триконодонтам, симметродотам и трехбугор­чатым, различавшимся по строению зубов и, ве­роятно, по способам питания и пережевывания пищи.

Несмотря на ряд прогрессивных особенностей (некоторое увеличение головного мозга, забота о потомстве и выкармливание его молоком, пережевывание пищи, волосяной покров, расположение конечностей под туловищем, обеспечивавшее болев совершенную локомоцию), млеко­питающие в мезозое не достигли больших успехов в борьбе за суще­ствование. Они оставались относительно малочисленными мелкими животными и, вероятно, вели ночной или сумеречный образ жизни (характерный для большинства зверей и ныне), обеспечивавший более благоприятные для них условия влажности и температуры. Воз­можно, именно несовершенство систем терморегуляции и выделения, «настроенных» на условия относительно низких температур и высо­кой влажности (как у их предков — терапсидных рептилий), не позволили мезозойским млекопитающим успешно конкурировать с завропсидами. Хотя мезозойский млекопитающие уже обладали таким хорошим теплоизолятором, как шерстный покров, и, вероятно, мог­ли усиливать теплоотдачу за счет потоотделения, у них еще не было совершенной интеграции разных механизмов терморегуляции в еди­ную систему; они не могли иметь достоянной температуры тела и про­игрывали рептилиям в условиях жаркого и сухого климата.

В триасе начался подлинный расцвет рептилий, особенно много­численны и разнообразны становятся группы пресмыкающихся с диапсидным черепом.

Среди лепидозавров появляются клювоголовы, дожившие до наших дней в лице единственного современного вида — гаттерии. Широте распространение в триасе получила родственная клювоголовым группа ринхозавров , довольно крупных (0,5—5 м) животных, челюсти которых были пре­образованы в мощный беззубый клюв. Эти животные несколько на­поминали дицинодонтов и, возможно, конкурировали с ними.

В среднем триасе появляются настоящие ящерицы, которые вскоре становятся очень разнообразными. Замечательно, что среди позднетриасовых ящериц икарозавры развили приспособления к планирующему полету, подобно современным агамовым ящерицам Draco volans («летающим драко­нам»); на удлиненных ребрах, выступавших далеко вбок от туловища натянута перепонка, образующая крылья.


Многочисленные Псевдозухии

Многочисленны и разнообразны в триасе были и представителя другого ствола завропсид — архозавры. Корневой группой этого ствола являются псевдозухии(Рис. 16), или текодонты, — преимущественно небольшие животные, прими­тивные представители которых внешне несколько напоминали ящериц.

Но у псевдозухий череп сохранял типичное диапсидное строений, зубы сидели в специальных ячейках, а не прикреплялись к краю челюсти, как у ящериц. Для псевдозухий была харак­терна тенденция к удлинению задних конечностей, связанная с пере­ходом к быстрому бегу на двух ногах (бипедальная локомоция). Нужно отметить, что и ящерицы при максимальной скорости бегут лишь на двух задних конечностях, приподняв переднюю часть тела и длинный хвост над землей. Такой способ убыстрения бега был, видимо, характерен и для псевдозухии, по у последних он получил более значительное развитие. Среди их потомков появились насто­ящие двуногие формы.

Некоторые группы псевдозухий перешли к полуводному, или амфибиотическому, образу жизни. В среднем и позднем триасе широ­ко распространены были фитозавры, имевшие внешнее сходство с крокодилами. В позднем триасе от псевдозухий возникли и настоящие крокодилы, оказавшиеся лучше приспособленными к роли амфибиотических хищников и быстро вытеснившие фитозавров. И фитозавры, и крокодилы конкурировали в водоемах с последними стегоцефалами — лабиринтодонтами, представленными в триасе очень крупными формами с огромным уплощенным черепом (достигавшим в длину 125 см). Однако и эти гиганты не выдержали конкуренции с водными рептилиями. Последние стего­цефалы вымерли к середине юрского периода. Зато выжили самые мелкие потомки лабиринтодонтов, давшие начало бесхвостым зем­новодным; наиболее древние представители последних, еще имевшие небольшой хвост, известны из отло­жений нижнего триаса.

В триасе появились также черепахи и ряд других групп пресмыкающихся, которые заслуживают особого рассмотрения.


Жизнь в Мезозойских Морях и Морские Рептилии

Теплые моря, заливы и лагуны океанов в мезозое были богаты жизнью. После пермского вымирания разнообразие морских организмов в триасе вновь возрастает. В эволюционных стволах переживших пермский кризис, появляются многочисленные новы виды и новые крупные ветви. По-видимому, и мезозое возник новый тип водорослей: во всяком случае, начиная лишь с юрских отложений достоверно известны ископаемые остатки представителей диатомовых водорослей.

В донной фауне опять обильны мшанки; многочисленны морские ежи и морские звезды. Постепенно растет численность и разнообразие брюхоногих моллюсков. Среди двустворчатых моллюсков выделяется мезозойская группа рудистов, неподвижно прикреплявшихся к субстрату одной из створок своей асимметричной раковины, которая у ряда форм достигала размера 1,5м. В триасе начинается бурный расцвет аммонитов и белемнитов. Мезозойские головоногие были очень разнообразны и по форме раковины, и по размерам, варьировавшим у аммонитов от нескольких миллиметров до 3м.

Постепенно обновилась и ихтиофауна. В юрское время сформиро­вались существующие и ныне группы пластинчато-жаберных хряще­вых рыб — акулы и скаты. Среди костных рыб появились новые группы актиноптеригий: костные ганоиды и костистые рыбы. Первые пережили расцвет в юрском и начале мелового периода; вторые возникли в юрском периоде, а начиная с мелового времени стали доминирующей группой (к костистым принадлежит 95% всех современных видов рыб). Про­должали существовать в мезозойских морях и представители кистеперых — целаканты.

Всякая группа организмов, сумевшая в ходе эволюционных про образований достичь нового уровня организации, под давлением естественного отбора начинает «экологическую экспансию», осваивая все доступные на этом новом уровне организации местообитания способы питания и т.п. Разнообразие развивающихся при этом при­способлений (адаптаций) и возникающих жизненных форм зависит от совершенства и пластичности организации данной группы. Несомненно, одной из самых поразительных в этом отношении групп являются pептилии, которые в мезозое освоили практически все возможные типы местообитаний и дали фантастическое разнообразие жизненных форм, не превзойденное ни одним другим классом животных. Триас ознаменовался успешным освоением рептилиями не только пресных водоёмов (фитозавры и крокодилы), по и морей. Морские рептилии получили в мезозое широкое распространение и были чрезвычайно разнообразны.

Среди них наиболее известны завроптеригии. Это были животные странного облика. Причудливый облик плезиозавров(Рис. 17) имеет, однако, современную аналогию (хотя и в миниатюре); у морских змей ластохвостов также имеется утолщенное туловище, плоский хвост и длинная топкая шея (в 4—5 раз более тонкая, чем туловище). Такие пропорции помогают водному хищнику использовать массивное широкое туловище как своего рода опору и воде на плаву, по отношению к которой голова на длинной и гибкой шее имеет значительную подвижность при ловле добычи и борьбе с нею.

Пищей завроптеригиям служили различные рыбы и головоногие (аммониты и белемниты). Большинство плезиозавров, обладавших небольшой головой на тонкой и длинной шее, питалось относительно некрупной добычей. Зато появившиеся в позднеюрское время круп­ные плиозавры имели огромный череп (до 3м у 12-метровых ящеров) с острыми зубами длиной до 10 см. Эти морские хищ­ники могли, вероятно, питаться крупными глубоководными головоногими (подобно современным кашалотам) и даже нападать на более мелких плезиозавров и других морских рептилий. Наиболее совершенными пловцами среди морских рептилий ме­зозоя, бороздившими как прибрежные моря, так и открытый океан, были ихтиозавры. Их название означает «рыбоящеры», что подчеркивает внешнее сходство этих животных с рыбами. Размеры ихтиозавров чаще всего составляли 3—5 м, по некоторые виды достигали в длину 13 м. Череп ихтиозавров напоминал дельфиний большими глазницами, длинной узкой мордой, наверху у основания которой располагались ноздри, и длинными узкими челюстями, уса­женными многочисленными тонкими и острыми зубами. Как рыбы и китообразные, ихтиозавры плавали за счет работы большого хвос­тового плавника, расположенного, как у рыб, в вертикальной плос­кости (у дельфинов и других китообразных хвост располагается го­ризонтально). Имелся и спинной плавник — стабилизатор движения. Ихтиозавры, по всей вероятности, уже не могли выходить на сушу даже для откладки яиц. Вероятно, они стали живородящими. Живорождение (даже с образованием примитивной плаценты) не так уж редко среди пресмыкающихся: оно характерно, в частности, для целого ряда видов современных ящериц и змей.


Летающие Ящеры и Птицы

Архозавры в мезозое овладели не только сушей, но и воздухом (их попытки выйти в море были менее успешны). По крайней мере две группы этих рептилий(рис. 18) приобрели способность к полету. Первой из них были птерозавры — летающие ящеры, появившиеся в начале юрского периода. Крылья птеро­завров, как у летучих мышей, были образованы летательными пере­понками, натянутыми между передними и задними конечностями и телом. Но если у летучих мышей крыло поддерживается четырьмя удлиненными пальцами передней конечности, то у птерозавров — лишь одним гипертрофированным четвертым пальцем. Три других пальца кисти у них были свободны, имели когти и располагались на сгибе крыла. Вероятно, птерозавры могли использовать их при лазании и цеплянии. Крыло летающих ящеров было, по-видимому, механически менее прочным, чем таковое летучих мышей. Однако птерозавры были способны к достаточно разнообразным формам по­лета, как это было показано аэродинамическими расчетами и экспе­риментами с моделями, имитирующими летательный механизм этих животных. Многие особенности строения птерозавров предвосхитили свя­занные с полетом приспособления птиц и летучих мышей (возникшие независимо у каждой из этих трех групп летающих позвоночных). Так, скелет птерозавров характеризовался высокой прочностью и легкостью, многие кости были пневматизированы, облитерировались швы между рядом костей черепа, сильно развитая грудина несла продольный киль для увеличения поверхности прикрепления лета­тельных мышц. Хотя у примитивных птерозавров сохранялись зубы, высшие представители этой группы их утратили и приобрели рого­вой клюв. Головной мозг летающих ящеров в целом ряде отношений напоминал мозг птиц: полушария переднего мозга значительно увели­чены, тогда как обонятельные доли редуцированы, очень велик моз­жечок, крупные зрительные доли среднего мозга оттеснены вниз и отчасти прикрыты большими полушариями и мозжечком. Тело птерозавров было покрыто не чешуей, как у большинства рептилий, а тонкими волосообразными придатками, сохранившимися, как и летательные перепонки, на отпечатках в тонкозернистых породах, вмещающих ископаемые остатки. Более примитивной группой летающих ящеров являются юрские рамфоринхи (рис. 18), обладавшие длинным хвостом и хорошо развитыми зубами. В позднеюрское время появля­ются птеродактили, у которых хвост ре­дуцировался (как и у высших птиц). Вероятно, птеродактияи обла­дали более совершенным полетом, чем рамфоринхи. Разные формы летающих ящеров сильно различались по размерам тела, строению челюстей, форме крыльев и, очевидно, по характеру полета и способам питания. Среди птеродактилей вьтречались виды размером с воробья, а самые крупные представители птерозавров били самыми большими летающими животными, когда-либо суще­ствовавшими на Земле. Долгое время рекорд размеров принадлежал позднемеловому птеранодону — огромному ящеру, раз­мах крыльев которого составлял 7,5—8 м, а их площадь — 5,8 м; масса тела птеранодона достигала 18—25 кг. Череп этого летающего гиганта имел странный торчавший далеко назад заталочный гребень (может быть, уравновешивавший длинный тяжелый клюв), и общая длина черепа от конца гребня до переднего конца беззубых челюстей постигала 2 м. Птерозавры были единственными летающими позвоночними на протяжении большей части юрского периода. В поздней юре у них появились конкуренты, дальнейшие эволюционные преобразования которых привели к формированию более совершенного летательного аппарата и к достижению более высокого общего уровня организации. Это были птицы. Впрочем, примитивные позднеюрские птицы по многих отношениях еще уступали летающим ящерам и не могли спорить с ними за первенство в воздухе. Остатки древнейших птиц, широко известных архео­птериксов, или «первоптиц», были най­дены в тонкозернистых сланцах Золенгофена (Западная Германия). В организации археоптерикса причудливо объединены с одной стороны, птичьи, а с другой — рептильные признаки. По отпечаткам на сланце видно, что тело первоптицы было покрыто настоящими перьями. Крупные маховые перья формировали несущую поверхность крыльев. Мозговая коробка была увеличена по сравне­нию с таковой типичных рептилий, и головной мозг рядом особеннос­тей напоминал птичий. Кости не были пневматизированы, а грудина невелика и лишена ки­ля, следовательно, у археоптерикса не могло быть мощных летатель­ных мыши. Вряд ли археоптериксы хорошо летали. Скорее всего, они лишь перепархивали на небольшие расстояния среди кустов и ветвей деревьев. Современные им птерозавры, несомненно, обладали зна­чительно более совершенным полетом.

Птицы, как и летающие ящеры, возникли от мелких архозавров, приспособившихся к лазанию по деревьям. Более древние наземные предки птиц, несомненно, использовали бипедальное (двуногое) передвижение (иначе нельзя объяснить строение задних конечностей птиц). При лазании по деревьям и прыжках с ветки на ветку очень полезны приспособления, позволяющие планировать, удли­няя прыжок. У птерозавров таким приспособлением стали летательные перепонки, а у птиц — перья, представляющие собой усложнен­ную модификацию роговых чешуй, характерных для всех рептилий. Первоначально основной функцией перьевого покрова была тепло­изоляция (эту функцию сохраняют перья и у современных птиц). Усовершенствование этой первичной функции, сопровождавшееся разрастанием перьев и усложнением их структуры, создало предпо­сылки для использования перьев в формировании несущей поверхности крыльев, сначала для планирования, а затем и для машущего полета. Птерозавры, по всей вероятности, произошли от одной из групп позднетриасових (или среднетриасовых) псевдозухий. Аналогичное происхождение (но от другой группы псевдозухий) некоторые ученые приписывают и птицам. В дальнейшем птицы еще более приспособились к условиям окружающей среды, породив довольно большое разнообразие видовых групп (Например Рис.19 - Гесперорнисы были первыми (среди известных птиц) водоплавающими формами, причем совершенно утратили спо­собность к полету. Крылья у гесперорнисов были довольно сильно редуцированы, и плавали эти птицы с помощью работы мощных зад­них конечностей.)


Изменения в Составе Наземных Биоценозов во Второй Половине Мезозоя

Во второй половине мезозоя происходили многие интересные и важные события. В начале мелового периода от ящериц возникли змеи. Нужно сказать, что среди ящериц нередко появлялись формы с сильно удлиненным телом и редуцированными конечностями (многие из них существуют и ныне).

Среди растений увеличилось количество покрытосеменных (происхождение которых не совсем ясно). Широкое распространение покрытосеменных к середине мелового периода и приобретение ими ведущей роли среди флоры в большинстве наземных биоценозов произошло в относительно небольшие (в категориях геологического времени) сроки (порядка 15—20 млн. лет), но не носило «взрывного» характера. Это еще одна загадка истории, на которую пока нет точного ответа. Как бы то ни было, существенное изменение флоры в сере­дине мелового периода неминуемо должно было сказаться на всем облике биосферы, в первую очередь на структуре биоценозов суши.


Великое Вымирание

Последние века мезозойской эры были временем драматических событий, сущность которых пока еще не вполне ясна. Возможно, эти события были в какой-то мере подготовлены изменениями флоры. Вслед за «победным шествием» покрыто­семенных в течение позднего мела вымирают их предшественники — беннеттиты и проангиоспермы, сильно сокращаются распространение и разнообразие папоротников и саговников. Общий облик флоры позднего мела уже всецело определяется ангиоспермами; из голосе­менных сохранили свои позиции лишь хвойные. С середины мелового периода наметились некоторые изменения и в фауне. Изменения флоры прежде всего сказались на насекомых. На протяжении позднего мела энтомофауна постепенно обновилась: исчез целый ряд архаических семейств и появились группы, сущест­вующие и поныне. Однако в широколиственных и хвойных лесах и на открытых рав­нинах позднего мела по-прежнему доминировали различные дино­завры; в воздухе реяли гигантские летающие ящеры; в морях были обильны разнообразные морские рептилии — плезиозавры и моза­завры, было много морских черепах; в пресных водоемах оби­тали многочисленные крокодилы. Общий облик фауны в позднемеловой эпохе оставался в целом прежним, типичным для «века динозавров», в течение свыше 45 млн. лет после повсеместного распространения покрытосеменных. Но в конце мелового периода в относительно краткие (геологи­чески) сроки произошло вымирание многих групп позвоночных и беспозвоночных животных, наземных, водных и летающих организ­мов. Вымирают и гигантские формы, и животные мелких размеров, и растительноядные, и хищные. К началу кайнозоя вымерли все динозавры, 8 из 10 верхнемеловых семейств крокодилов, все летаю­щие ящеры, плезиозавры, последние виды ихтиозавров. Среди беспозвоночных вымирание постигло широко распространен­ных в юрском и меловом периодах двустворчатых моллюсков-рудистов, аммонитов, белемнитов и многих наутилоидных головоногих, вымерли также многие виды морских лилий и фораминифер. Следует подчеркнуть, что это великое вымирание не сопровожда­лось одновременным повышением численности и разнообразия ви­дов каких-то других групп. Как и в пермском периоде, произошло значительное общее обеднение фауны. Уже в кайнозое (так сказать, на освободившемся месте) начинается экспансия не затронутых выми­ранием групп (млекопитающие, птицы, наземные лепидозавры, бес­хвостые земноводные). С другой стороны, как и во время пермского вымирания, на рубеже мезозоя и кайнозоя некоторые группы животных как бы остались в стороне от происходивших событий (их разнообра­зие и численность не претерпели существенных изменений). Среди позвоночных это различные группы рыб, хвостатые земноводные, черепахи. Как и в пермском периоде, великое вымирание в конце мела не носило характера мировой катастрофы (физико-географические ус­ловия на рубеже мезозоя и кайнозоя не претерпели каких-либо вне­запных и резких изменений) и сам процесс вымирания был кратким лишь в геологическом смысле. Он продолжался в течение миллионов пет, когда вымирающие филетические линии постепенно уга­сали. Остается неясным, в какой мере эти процессы происходили одновременно на разных континентах и в разных океанах и морях. Но, так или иначе, общий итог был один на всем земном шаре, что, собственно, и придает великим вымираниям особенно загадочный характер. В гипотезах о причинах великого вымирания в конце мела нет недостатка. Эта волнующая проблема привлекала и продолжает привлекать внимание многих ученых. Обзор этих многочисленных гипотез потребовал бы специальной книги и да­леко выходит за рамки возможностей данной работы, поэтому я опущу эти гипотезы, наверняка известные каждому в той или иной степени.

Кайнозой – век млекопитающих.

Предисловие

Итак, физико-географические ус­ловия в начале палеогена, по существу, не отличались от таковых в конце мелового периода. После не­которого похолодания климат вновь стал теплым. В Европе до берегов Балтики продолжали существовать тропические и субтропические флоры, имевшие характер густых и влажных лесов. В них были широко представ­лены пальмы, вечнозеленые лавры, дубы, каштаны, магнолии, мирты, фикусы и другие растения; из хвой­ных — гигантские секвойи, болотные кипарисы; в лесной тени произрастали папоротники, в том числе древовидные; по морским побережьям — тропическая мангровая растительность. С этой богатой флорой связано происхожде­ние мощных пластов каменного угля.

На обширных территориях Цен­тральной Азии с начала палеогена намечается тенденция к аридизации (развитие засушливости) климата, ко­торая, постепенно усиливаясь, прогрессировала на протяжении всего этого периода и неогена. Это привело к усыханию обильных здесь в позднемеловое время внутриконтинентальных пресноводных бас­сейнов, к постепенному обезлесению ландшафта с развитием к концу палеогена (олигоценовая эпоха) открытых пространств типа лесо-степей, степей и саванн. Вместо сочной и влаголюбивой лесной расти­тельности преобладание здесь получают злаки, жесткие и относительно сухие листья которых хорошо защищены от обезво­живания. Местами в саваннах возвышались отдельные группы де­ревьев с высоко расположенными кронами. Более густая древесная и кустарниковая растительность сохранялась по долинам рек.

Во второй половине палеогена началось постепенное глобальное похолодание климата, которое прогрессировало в неогене. Оно за­вершилось в плейстоценовой эпохе четвертичного периода развитием нового великого оледенения.


Развитие Жизни в Палеогене

В начале палеоценовой эпохи фауна млекопитающих оставалась, по существу, той же, что и в позднемеловое время. В ней были пред­ставлены лишь группы, возникшие еще в мезозое: растительноядные многобугорчатые, внешне напоминавшие грызунов, но родствен­ные прототериям — однопроходным, а также архаические представители сумчатых и плацентарных, питавшиеся насекомыми и дру­гой мелкой добычей. Для всех архаических млекопитающих были характерны такие примитивные особенности, как относительна небольшой мозг, простые треугольные зубы (за исключением многобугорчатых), пятипалые конечности. К середине палеоценовой эпохи разнообразие млекопитающих значительно возросло. Но основная адаптивная радиация плацентарных и сумчатых происходила в палеоцене и эоцене, когда сложились вce основные отряды кайнозойских млекопитающих.

От примитивных насекомоядных плацентарных позвикли всеяд­ные, использовавшие как животную, так и растительную пищу, а затем и настоящие растительноядные формы. Растительноядность у некоторых групп плацентарных развилась в палеоцене. Начало этого направления приспособительной эволюции было представлено архаическими копытными — кондиляртрами. Это были довольно небольшие (от нескольких десятков до 170—-180 см) животные, внешне, пожалуй, больше походившие на хищников, чем на копытных, и сохранявшие большие острые клыки.

Среди этих последних уже в позднем палеоцене и эоцене появились более специализированные, крупные и нередко причудливые формы. Характерны в этом отношении диноцераты (Dinocerata — страшнорогие), которые были самыми крупными наземными млекопитающи­ми эоценовой эпохи, достигавшими размеров современных носорогов. Это были массивные животные; их пятипалые, относительно короткие и толстые конечности несли копыта. Череп у некоторых форм (на­ пример, у уинтатерия, Рис. 20) имел рогоподобные костные выросты и кинжалообразные острые клыки. Вероятно, эти крупные животные были хорошо защищены от нападений современных им хищников. Однако дипоцераты вымерли уже к концу эоцена. Скорее всего, их вымирание вызвано конкуренцией с более прогрес­сивными группами копытных, которую диноцераты проиграли бла­годаря общему консерватизму, своей организации, в частности сохра­нению относительно небольшого головного мозга.

В палеоцене и эоцене появились такие прогрессивные группы растительвоядных млекопитающих, как непарнокопытные, парнокопытные, гры­зуны, и ряд других. Их быст­рая адаптивная радиация привела к вымиранию архаических групп растительноядных зверей: многобугорчатых (уже к среднему эоцену), кон- диляртр (к концу эоцена), диноцерат и родственных последним пантодонтов. Своеобразным убежищем для не­которых примитивных групп млекопитающих стала Южная Америку которая к концу раннего эоцена обо­собилась от Северной Америки и оставалась изолированной до плиоцена. В палеогене и неогене там существо­вал удивительный мир причудливых форм, сохранивших общий прими­тивный уровень организации. Среди высших копытных раньше других начали адаптивную радиацию непарнокопытные, которые уже в эоцене были представлены большим разнообразием форм. Центром эво­люции этого отряда была, по-види­мому, Северная Америка. Непарнокопытные пережили максимальный расцвет в палеогене, причем их эволюционная история стала одной из самых ярких страниц в кайнозойской палеонтоло­гической летописи.

Примитивные эоценовые непарнокопытные были небольшими живот­ными, у которых уже начались из­менения конечностей, связанные с их приспособлением к быстрому бегу. В филогенезе лошадей происходило постепенное увеличение размеров, сопровождавшееся удлинением морды. Дальнейшая эволюция лошадей связана с приспособлением к жизни в открытых местообитаниях, широко распостранившихся в неогене. Тенденция к увеличению размеров тела еще ярче, чем у лошадиных, была выражена у титанотериев и носорогов. Эволюция обеих этих групп также началась с небольших эоценовых форм. Но уже в олигоцене эти непарнокопытные были представлены огромными жи­вотными, с размерами которых могут сравниться среди наземных млекопитающих лишь неогеновые хоботные. Титанотерии, или бронтотерий (Рис. 21), дости­гали в холке высоты около 2,5 м при длине тела до 4,5м. Их длинный и низкий череп с поразительно маленькой мозговой полостью нес на носовых или лобных костях большие рогоподобные выступы, пар­ные или в виде толстого срединного «рога», раздвоенного у вершины.

Титанотерии вымер­ли уже в раннем олигоцене. Их заместили представители другой группы непарнокопытных — носороги, дожившие до нашего времени в лице немногих представителей. В олигоцене и нео­гене это была процветающая и очень разнообразная группа. Однако путь эволю­ционных преобразований приводил к формированию механически несо­вершенной конструкции конечнос­тей (редук­ция пальцев опережала преобразова­ния запястья и предплюсны), которая не обеспечивала над­лежащего перераспределения нагру­зок. В итоге при конкуренции с представителями адаптивных линий инадап­тивные (В. О. Ковалев­ский назвал инадаптивным такой путь эволюционных преобразований, при котором формирующееся при­способление несет в себе предпосыл­ки для возникновения тех или иных внутренних противоречий; послед­ние нарастают по мере развития приспособления, приводя в конце концов к эволюционному тупику) формы в дальнейшем выми­рали. Филогенетические изменения как по адаптивному (свободному от по­добных внутренних противоречий), пути происходят под контролем естественного отбора и всегда явля­ются приспособительными (так что сам термин «инадаптивный» = неприспособительный). Отбор благоприятствует любым изменениям, дающим какой-либо выигрыш в борьбе за существование на данном историческом этапе, и не может «предвидеть» дальнейшей судьбы происходящих преобразований. Поэтому равно возможны и адаптив­ные и инадаптивные варианты изменений, поскольку вредные послед­ствия инадаптивного пути (например, рис. 22) проявляются лишь на последующих этапах филогенеза и не сами по себе, а при конкуренция с более удачными, адаптивными вариантами.


Оригинальная фауна Африки.

В Африке тем временем сформировалась своя оригинальная фауна растительноядных млекопитающих. В состав этой фауны входили внешне резко различающиеся животные: огромные хоботные, небольшие даманы, или жиряки, напоминаю­щие внешним обликом и образом жизни некоторых грызунов, вымершие еще в палеогене эмбритоподы, отдаленно похожие на носорогов или титанотериев, и перешедшие к водному образу жизни сиреновые.

Рассмотрим древнейшего из известных представителей хоботных - меритерия из позднего эоцена и раннего олигоцона Египта, а также мастодонтов. Меритерий был величиной с тапира и внешне, вероятно, походил на это животное, имея зачаточный хобот. Вторые пары резцов в верх­ней и нижней челюсти были сильно увеличены; их дальнейшая ги­пертрофия у более поздних хоботных привела к формированию бивней. В раннем олигоцене появились древнейшие мастодонты — более высокоразвитые хоботные, внешне уже напоминавшие настоящих слонов. По паре гипертрофированных резцов-бивней было как в верхней, так и в нижней челюсти. Морда у мастодонтов оставалась удлиненной, поэтому хобот (результат разрастания верхней губы и носа) был относительно коротким. Масто­донты были много крупнее меритерия, некоторые виды уже в олиго­цене достигали размеров современных слонов. Мастодонтами называют представителей нескольких семейств, существовавших с олигоцена до плейстоцена.

Интересно возникновение в раннем эоцене крупных наземных нелетающих птиц с редуцироваиными крыльями. Некоторые из них обладали высоким массивным клювом с острыми краями и были, ве­роятно, опасными хищниками. Североамериканская эоценовая диат­рима (Рис. 23), достигавшая двухметровой высоты, и более поздний, миоценовый фороракос из Южной Америки, по­жалуй, напоминали двуногих хищных динозавров (разумеется, на более высоком уровне организации). Существование таких крупных нелетающих птиц показывает, что после вымирания динозавров пти­цы, как и млекопитающие, сделали попытку занять освободившиеся в биоценозах экологические ниши крупных хищников. Неудача птиц в этой роли может быть связана с меньшим (по сравнению со зверями) совершенством размножения и трудностями насиживания яиц и выращивания птенцов для нелетающих видов, численность ко­торых, как крупных хищников, не могла быть высокой. Во всяком случае, эти своеобразные «пернатые динозавры» вымерли после по­явления высших групп хищных млекопитающих. Уже с позднезоценового времени известны пингвины, вся история которых проходила в южном полушарии. Ископаемые пингвины найдены в Новой Зеландии и Южной Америке.


Развитие Жизни в Неогене

В неогене получили преобладание виды наземных животных, при­способленные к жизни в открытых и относительно сухих местообитаниях типа лесостепей, степей и саванн. В олигоцене вымерли многие формы, тяготевшие к лесам, влажным лугам, заболоченным участкам и тому подобным местам, характерным для палеогена. Эта судьба постигла многие группы непарнокопытных. Зато парнокопытные начиная с олигоцена широко распространились и быстро прогрессировали. Особенно это относится к наиболее новым их группам: оленям, жирафам, вилорогам и многочисленным полорогим. Успех этих форм преждо всего связан со специализацией зубов и пищеварительной системы к переработке грубых растительных кормов, злаков.

В неогене максимального расцвета достигли также хоботные, рас­селившиеся из Африки в Евразию, затем в Северную и наконец в Южную Америку. Центральный эволюционный ствол хоботных был представлен мастодонтами, среди которых появились очень разнообразные формы: с коротким и длинным хоботом, различного строения бивнями и т. п. Чрезвычайно своеобразны были так назы­ваемые лопаторылые мастодонты, y кото­рых передняя область нижней челюсти чрезвы­чайно удлинилась, образовав вместе с огромными уплощенными резцами своего рода «совок» или «лопату», далеко выдвинутую вперед и имевшую чудовищную длину: у животного, достигавшего в холке высоты 2,5 м, нижняя челюсть составляла более 2 м. По-видимому, лопаторылые мастодонты использовали свою феноменальную нижнюю челюсть как лопату, подцепляя ею какой-то растительный корм: сочные листья, клубни или корневища водных растений.

От мастодонтов в миоцене возникли и настоящие слоны. Иx родиной, вероятно, была Южная Азия, откуда они в плиоцене расселились в Европу, Северную Америку и Африку. У слонов, в отличие от мастодонтов и динотериев, сохранилась лишь верхне­ челюстная пара бивней, но особенно характерной чертой настоящих слонов является строение их огромных коренных зубов.

0билию растительноядных млекопитающих в лесостепях и неогена соответствует и разнообразие хищников. В миоцене су­ществовали уже все семейства современных хищных млекопитающих, представленные главным образом примитивными формами (большин­ство современных родов известно начиная с плейстоцена). Среди ископаемых кошачьих интересна группа так называемых саблезубов, существовавшая с олигоцена до плейстоцена. Этих хищников иногда называют «саблезубыми тиграми», но к тиграм они бы­ли не более близки, чем к львам, леопардам или домашним кошкам (которые являются представителями другого подсемейства кошачьих, собственно кошек). Саблезубы обладали огромны­ми, уплощенными с боков клыками, достигавшими у крупных форм длины около 15 см; этим клыкам хищники и обязаны своим названием. Череп имел относительно длинную (по сравнению с собственно ко­шачьими) морду. Своеобразным было и телосложение саблезубов, характеризовавшееся коренастым, крепким туловищем, мощной шеей и могучими когтистыми лапами, причем передние конечности были длиннее и, видимо, сильнее задних. Такой тип телосложения сов­сем не соответствует способам охоты, характерным для современных кошачьих; едва ли саблезубы могли совершать дальние прыжки на добычу из засады или стремительно преследовать ее даже на коротких расстояниях. Чудовищные клыки и способность чрезвычайно широко открывать пасть, отводя нижнюю челюсть далеко вниз и назад (под углом, близким к прямому или даже несколько большим), указывают на то, что главным способом умерщвления добычи у саблезубов было нанесение страшных ударов клыками, глубоко вонзавшимися в тело жертвы и причинявших тяжелые ранения. Вероятно, основной добы­чей больших саблезубов (среди них имелись и относи­тельно мелкие виды) были крупные толстокожие животные (хобот­ные, носороги и др.), на которых хищники нападали из засады. Вымирание большинства круп­ных растительноядных форм к концу плейстоцена привело к вымира­нию охотившихся на них саблезубов.

В миоцене водные млекопитающие пополнились ластоногими. Общие особенности строения ластоногих сформировались параллельно и независимо в трех указанных группах. На огромных пространствах Северной Америки, Европы, Азии и Африки, занятых лесостепями и степями с разной степенью увлажненности, в позднем миоцене и плиоцене получила широчайшее рас­пространение характерная фауна, которую называют «гиппарионо-вой» по самому характерному ее представителю, трехпалой лошади — гиппариону (рис. 24). Многотысячные табуны гиппарионов паслись на лугах и остепненных участках, перемежавшихся с рощами широколиственных листопадных деревьев и кустарников (дуб, бук, ясень, вяз, ольха, различные виды тополя, клен, грецкий орех и др.), и разреженными лесами (включавшими широколиственные и хвойные деревья: сосны, секвойи, болотные кипарисы), прорезанных долинами рек и заболоченными низинами. Вместе с гип-парионами обитали разнообразные антилопы, олени, древние жирафы, хоботные (мас­тодонты и динотерии), носороги и страусы (близкие к современным африканским). В состав гиппарионовой фауны входили, конечно, и хищники (саблезубы, различные псовые, гиены, росомахи, куницы, и др.), а также различные другие животные (грызуны, зайцеобразные, обезьяны). По-видимому, гиппарионовая фауна, рассматриваемая в целом, была в значительной степени предковой для современной фауны Аф­рики, включающей представителей тех же основных групп живот­ных. По аналогии с недавним прошлым африканских саванн и по оби­лию ископаемых остатков различных копытных в местонахождениях гиппарионовой фауны можно заключить, что в конце миоцена — плиоцене на огромных пространствах равнин Старого и Нового Све­та паслись неисчислимые стада гиппарионов, антилоп, оленей, хо­ботных и других растнтельноядных млекопитающих. Ю. А. Орлов высказал предположение, что в зоне умеренного пояса, где уже в неогене были отчетливо выражены сезонные изменения климата, эти гигантские стада копытных и сопровождавшие их хищники должны были совершать весной и осенью далекие миграции, подобные мигра­циям африканских копытных (связанным с сезонным выпадением осадков), но в гораздо большем масштабе.


Четвертичный Период

В плейстоцене происходило дальнейшее похолодание климата, сопровождавшееся постепенным отступанием теплолюбивой флоры и фауны в Евразии и Северной Америке к югу. Широкое распростране­ние получили листопадныеи хвойные леса, общий облик которых уже напоминал современные леса умеренного пояса. Состав фауны также приближался к современному; появились многие ныне существую­щие роды млекопитающих.

Одиако в плейстоцене сохранялись и более древние формы и группы животных (мегатерии, токсодонты, мастодонты, динотерии, саблезубы и др.), особенно многочисленные в Америке. Появились и некоторые своеобразные виды, которым нe суждено было пережить плейстоценовую эпоху. Среди них инте­ресны гигантские бобры — трогонтерии, имевшие длину более 2 м; большерогие олени (рис. 25), достигавшие высоты в холке около 2 м, но особенно замечательные поистине гигантскими ветвистыми рогами, размах которых превышал 4 м. Из плейстоценовых отложений известны многочисленные наход­ки крупных нелетающих страусоподобных птиц, отдельные виды ко­торых дожили до наших дней (африканские, австралийские и амери­канские страусы), другие вымерли к концу плейстоцена или были истреблены человеком в совсем недавнее вре­мя. Эта печальная судьба постигла в первую очередь гигантских птиц, обитавших на островах: мадагаскарских эпиорнисов и новозеландских моа, достигавших в высоту 3,3 м. На Новосибирских островах, на Аляске, на Украине и т. д. были обнаружены огромные скопления скелетов мамонтов, так назы­ваемые «мамонтовы кладбища». О причинах возникновение мамонто­вых кладбищ было высказано немало предположении. Наиболее веро­ятно, что они формировались в резуль­тате сноса течением рек (особенно вовремя весенних половодии или летних разливов; в паводки всегда погибает много животных) в раз­ного рода естественные отстойники (заводи, устья оврагов и т.п.) и их накопления там в течение многих лет. Вместе с мамонтами обитали и шерстистые носороги, покрытые густой коричневой шерстью.

Облик этих двурогих носоро­гов, так же как и мамонтов и других животных мамонтовой фауны, был запечатлен людьми каменного века — кроманьонцами в их ри­сунках на стенах пещер. На основании археологических данных мож­но с уверенностью утверждать, что древние люди охотились на самых различных животных, входивших в состав мамонтовой фауны, в том числе и на самых крупных и опасных — шерстистых носорогов и са­мих мамонтов (а в Америке на еще сохранившихся там мастодонтов и мегатериев). В связи с этим высказывались предположения, что человек мог сыграть определенную роль (по мнению некоторых ав­торов, даже решающую) в вымирании многих плейстоценовых жи­вотных. Однако в целом это представляется маловероятным, если учесть очень ограниченные возможности людей каменного века в их воздействии на природу, их малочисленность.

Вымирание мамонтовой фауны отчетливо коррелирует с концом последнего оледенения 10—12 тыс. лет назад. Потепление климата и таяние ледников резко изменили природную обстановку в прежнем поясе приледниковой тундростепи; возросла влажность воздуха и усилилось выпадение осадков; как следствие, на больших территориях развилась заболоченность, зимой увеличилась высота снежного покрова. Животные мамонтовой фауны, хорошо защищен­ные от сухого холода и способные добыватъ себе пищу на просторах тундростепи в малоснежные зимы ледниковой эпохи, оказались в крайне неблагоприятной для них экологической обстановке. Обилие снега зимой сделало невозможным добывание пищи в достаточном количестве. Летом же высокая влажность и заболачивание почвы, крайне неблагоприятные и сами по себе, сопровождались колоссаль­ным возрастанием численности кровососущих насекомых (гнуса, столь обильного в современной тундре), укусы которых изнуряли животных, не давая им спокойно кормиться (как это происходит и ныне с северными оленями). Таким образом, мамонтовая фауна оказалась за очень короткий срок (таяние ледников происходило очень быстро) перед лицом резких изменений среды обитания, к которым большинство составлявших их видов не сумело столь быст­ро приспособиться, и она прекратила существование. Из числа крупных млекопитающих этой фауны сохранились до наших дней северные олени, обладающие большой подвиж­ностью и способные совершать дальние миграции: летом в тундру к морю, где меньше гнуса, а на зиму на ягельные пастбища в лесотундру и тайгу. Приспособились к новым условиям некоторые мелкие животные из состава мамонтовой фауны (лемминги, песцы). Но болышинство видов млекопитающих этой удивительной фауны вымерли к началу голоценовой эпохи.

После завершения последнего оледенения 10—12 тыс. лет назад Земля вступила в голоценовую эпоху четвертичного периода, в те­чение которой установился современный облик фауны и флоры. Условия жизни на Земле ныне значительно более суровы, чем на про­тяжении мезозоя, палеогена и большей части неогена. И богатство и разнообразие мира организмов в наше время, судя по всему, сущест­венно ниже, чем за многие прошлые эпохи.

Заключение.

В голоцене все большую возможность воздействия на среду оби­тания приобретает человек, "венец творения". В наше время с развитием технической цивилизации деятельность зюдей стала поистине важнейшим гло­бальным фактором, активно изменяющим биосферу, часто далеко не в лучшую для природы сторону. В связи с формированием: человека современного вида (Homo sapiens) и развитием человеческого общества в течение четвертичного периода этот период кайно­зойской эры был назван антропогенои. Эволюция самого человека в общих четрах хорошо известна всем, поэтому я не буду заострять на ней внимание.

Список литературы.


Бернал Д. Возникновение жизни, М„ 1969.

Борисяк А. А. Из истории палеонтологии (идея эволюции). М.—Л., 1966.

Брукс М. Климаты прошлого. М„ 1952.

Варсанофьева В. А. Развитие жизни на Земле. М„ 1948.

Голенкин М. И. Победители в борьбе за существование, М., 1959.

Ливанов Н. А. Пути эволюции животного мира. М„ 1955.

М. Иорданский Н. Н. Развитие жизни на Земле. М. 1979.


Информация о работе «Эволюционная теория Дарвина»
Раздел: Биология
Количество знаков с пробелами: 101539
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
23130
0
0

... антибиотиков; дарвинизм создаёт  основу для представления о биосфере как сложнейшей развивающейся системе и в перспективе даёт возможность управления эволюционным процессом   4. Влияние эволюционной теории Дарвина на развитие  психологии Наряду с экспериментальным методом значительное влияние на развитие психологии оказал принцип эволюции и шире — принцип развития. По С. ...

Скачать
9929
0
0

... , борьба за существование. Дал материалистическое объяснение механизма видообразования и причин многообразия видов, а также объяснил причины возникновения целесообразности. Основные положения эволюционного учения Ч. Дарвина Эволюционная теория Дарвина представляет собой целостное учение об историческом развитии органического мира. Она охватывает широкий круг проблем, важнейшими из которых ...

Скачать
78570
0
0

... -1875) продемонстрировал прогрессивные изменения ископаемых остатков. Чарльз Дарвин (1809-1882), находившийся под влиянием идей Лайеля и Мальтуса, сформировал теорию эволюции в результате естественного отбора. I. ОСНОВНЫЕ ПОЛОЖЕНИЯ ЭВОЛЮЦИОННОГО УЧЕНИЯ ЧАРЛЬЗА ДАРВИНА. Весь ход развития науки XIX века неудержимо вел к формированию исторического взгляда на природу. Однако возникновение учения о ...

Скачать
67836
0
0

... эволюционного процесса. В нем отражается одна из фундаментальных черт живого – диалектика взаимодействия органической системы и среды. Таким образом, дарвиновская теория эволюции опирается на следующие принципы: -          Борьба за существование; -          Наследственности и изменчивости; -          Естественно отбора. Эти принципы являются краеугольным основанием научной биологии. Э. ...

0 комментариев


Наверх