Особливості контролю знань з математики

9088
знаков
0
таблиц
0
изображений

Житомирський державний педагогічний університет імені Івана Франка

 

 

 

 

 

 

 

Курсова робота

на тему:

“Особливості контролю знань з математики із застосуванням ЕОМ”

студентки 43 групи

фізико-математичного факультету

Куліш О.І.

науковий керівник:

Спірін Олег Михайлович

 

 

 

2000 р.


Серед основних ознак знань велике значення має уміння самостійно мислити, “бачити” задачу і знаходити підхід до її розв’язку, спроможність орієнтуватися в новій ситуації. Оцінюючи уміння, ми оцінюємо мислення, пам'ять, увагу і спроможність до самостійного мислення.

З усього різноманіття умінь виділимо такі, що найбільш перевіряються при розв’язуванні завдань:

1.  Уміння оперувати поняттями. Відомо, що не можна привести жодного судження не оперуючи поняттями. Поняття – загальна і необхідна форма всякого логічного мислення. Володіння поняттям пов’язано з аналізом, синтезом, порівнянням, зіставленням, абстрагуванням, узагальненням і, отже, із усіма розумовими процесами. Оцінюючи уміння, ми судимо про розвиток мислення, пам’яті, уваги.

2.  Уміння застосовувати теорію до розв’язування практичних і навчальних задач. Відомо, що практика – це матеріальна, цілеспрямована діяльність людей, освоєння і перетворення об’єктивної дійсності, загальна основа розвитку людського суспільства і пізнання. Являючись критерієм істини, практика відповідає на запитання: є знання або їх немає.

3.  Уміння самостійно мислити. Воно полягає в умінні виділити головне, порівняти це головне з даною ситуацією і знайти розв’язок.

4.  Знання мови математичних наук або уміння записати символами математичні поняття і факти. Оцінювання цих умінь здійснюється по кількісній ознаці – числу допущених помилок, числу правильних відповідей, часу виконання завдання, а також по якісному – спеціально підібраних завданнях оптимальної складності.

На основі критеріїв, що визначають об’єктивний контроль, встановлено, що основною дидактичною вимогою ефективного використання ЕОМ для перевірки знань з урахуванням обсягу, повноти, узагальненості, цілеспрямованості і дієвості є оптимальний рівень складності завдань і вправ, запропонованих до контролю. У запропонованій методиці використовується п'ять рівнів складності задач.

Перший і другий рівні – початкові; вони відповідають першому (“фактичному”) рівню знань, що полягає в накопиченні “фонду знань”, який складається в основному з фактів. При розв’язуванні учні обмежуються приведенням одиничних фактів, дають заучені характеристики термінів і явищ.

Третій рівень – операційний; він полягає в умінні здійснювати найпростіші логічні операції по готовому зразку і характеризується утворенням частносистемних асоціацій і наявністю зв’язку між знаннями, засвоєними в межах однієї глави або одного розділу.

Четвертий рівень – аналітико-синтетичний; досягнувши його, учні виявляють уміння узагальнювати, диференціювати стійкі знання, зв’язувати раніше вивчене з новими знаннями, виділяти головні ідеї, основні положення теми, розділу, розкривати різноманітні зв’язки і проводити аналогії.

П'ятий рівень – творчий; він потребує переносу знань у нові ситуації, створення нестандартних алгоритмів пізнавальних і практичних дій.

Можна сказати, що оволодіння знаннями на першому – другому рівнях пов’язано з формальною логікою, а на третьому – п’ятому – із діалектичною. Між усіма цими рівнями немає яскравої і різкої межі при навчанні. Проте при контролі бажано їх розрізняти.

Зупинимося докладніше на визначенні складності задач.

Очевидно, що при проведенні конкурсних іспитів необхідно висувати вимоги, які за формою і змістом не виходять за рамки шкільної програми. Запропоновані на вступних іспитах задачі по своєму змісту і стилю не повинні бути далекими як від конкретного шкільного предмета, так і від тих вимог, що подаються студентам при проходженні вузівських курсів.

Для виявлення системи знань з предмету відповідно до критерію обсягу пропонується при підготовці контрольного матеріалу попередньо виділити основні розділи, які підлягають контролю. Можна виділити такі розділи:

І. Дійсні числа. Відсотки. Прогресії.

II. Тотожні перетворення алгебраїчних виразів.

III. Раціональні рівняння і системи рівнянь. Раціональні нерівності і системи нерівностей.

IV. Ірраціональні рівняння і системи рівнянь. Ірраціональні нерівності і системи нерівностей.

V. Властивості елементарних функцій.

VI. Рішення задач за допомогою рівнянь і систем рівнянь.

VII. Властивості показникової функції. Показникові рівняння і системи показникових рівнянь.

VIII. Логарифмічна функція і її властивості. Логарифмічні рівняння, нерівності і системи логарифмічних рівнянь.

IX. Властивості тригонометричних функцій. Тотожні перетворення тригонометричних виразів.

X. Тригонометричні рівняння.

XI. Планіметрія.

XII. Стереометрія.

Кожний розділ розбитий на два підрозділи. Наприклад, розділ III ділиться на: раціональні рівняння і системи рівнянь; раціональні нерівності і системи нерівностей. Розділ XI ділиться на: задачі без застосування тригонометрії; задачі з застосуванням тригонометрії.

У кожному підрозділі виділені істотні поняття, теореми, наслідки, формули і властивості, без знання котрих неможливо подальше вивчення математики у вищій школі. Так, у розділі IV абітурієнт повинний знати:

-   що при розв’язуванні ірраціональних рівнянь і нерівностей розглядаються тільки арифметичні корені;

-   визначення арифметичного кореня;

-   що в області дійсних чисел корінь парного степеня з від’ємного числа не існує;

-   як розв’язуються ірраціональні рівняння;

-   як виникають сторонні корені і як губляться корені;

-   властивості нерівностей у застосуванні до знаходження області визначення ірраціонального виразу;

-   деякі штучні прийоми розв’язування ірраціональних рівнянь із радикалами ступеня вище другий;

-   приведення радикалів до подібного виду;

-   звільнення від ірраціональності в знаменнику і чисельнику дробу.

Ступінь трудності задач, вправ, прикладів визначається набором використовуваних елементів знань. Проте для розв’язування задач однакової складності може знадобитися різний час. У процесі контролю з застосуванням ЕОМ тимчасовий критерій використовується як параметр складності задачі, вправи, прикладу. Трудомісткість розв’язування задач першого рівня складності складає від 5 до 10 хв., другого – від 15 до 20, третього – від 25 до 30, четвертого і п’ятого – більш 30 хв.

При підготовці до розв’язування задач особливу увагу варто приділити розборові тих задач і прикладів, що приводяться в шкільних підручниках по кожному розділу і темі. Необхідно доводити розв’язок кожної задачі до кінцевого числового результату.

Варіанти першого – третього рівнів складності повинні містити задачі, що потребують для свого розв’язку знання фактичного матеріалу й уміння робити найпростіші логічні операції; варіанти четвертого і п’ятого рівнів – задачі, розв’язок яких припускає не тільки знання фактичного матеріалу, але й уміння логічно мислити, використовувати алгебраїчні перетворення при рішенні геометричних задач, наявність просторової уяви.

Помилки які допускаються при розв’язуванні задач можна умовно розбити на три види:

а) помилки обчислень;

б) незнання формул;

в) незнання алгоритмів розв’язання задач конкретного типу.

Помилки обчислень особливо істотні при машинному опрацюванні результатів іспиту, тому що при правильному виборі алгоритму розв’язування задачі недбалість в обчисленнях хоча б в однім місці спричиняє за собою визнання задачі цілком нерозв’язаною.

Незнання формул, невміння вибрати з них найбільш важливі, що призводять до раціонального розв’язку, змушує вдаватись до менш раціональних шляхів розв’язування задачі, що ускладнює розрахунок і часто збільшує можливість одержання помилкової відповіді. Крім цього, на розв’язок задачі витрачається багато часу.

Незнання алгоритмів розв’язання задач конкретного типу пов’язано з відсутністю творчого підходу до розв’язування задач, невмінням логічно мислити, синтезувати при розв’язанні проблемних задач різноманітні розділи математики – алгебру, геометрію і тригонометрію.

Використання ЕОМ для опрацювання результатів контролю знань потребує одержання числової відповіді в задачі. Це скорочує можливі помилки операторів при введенні цих результатів у пам’ять ЕОМ. Тому у формулювання завдань звичайно вводиться додаткова вимога, що визначає, який саме розв’язок необхідно вибрати із сукупності отриманих.

Наведемо приклади можливих формулювань завдань:

-   знайти найбільше (найменше) ціле значення х, що задовольняє визначеній умові або системі умов;

-   знайти більший (менший) корінь рівняння;

-   знайти розв’язок х (у градусах) тригонометричного рівняння, що задовольнять умовам А < х < В;

-   знайти розв’язок (х, у) системи рівнянь, у відповіді записати х+у при х<5.

Наявність таких обмежень не ускладнює поставлену задачу. Дійсно, потрібно, як це звичайно робиться, розв’язати рівняння, систему рівнянь, нерівність або систему нерівностей, а потім виділити той розв’язок, що задається в додатковій умові. При виконанні письмової роботи доцільно пам’ятати, що правильна відповідь задачі, приклада або вправи сама по собі не заміняє розв’язок. Розв’язок повинний бути послідовним і чітким.


Информация о работе «Особливості контролю знань з математики»
Раздел: Педагогика
Количество знаков с пробелами: 9088
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
71651
0
0

... , що відводиться за планом на опитування учнів і на закріплення матеріалу учитель вигляді вправ (приблизно 50%). Розділ 2. Психолого-педагогічна реалізація стандартизованого контролю знань 2.1 Кібернетичний підхід до навчання Навчання - складний і діалектико-суперечливий процес. В ньому поєднуються три взаємопов'язані між собою компоненти: зміст навчання (програм і підручників, наочних і ...

Скачать
49860
1
0

... нюються по-різному, за результатами оглядових робіт оцінки виставляються в журнал, за результатами тренувальних робіт можна виставити лише позитивні оцінки. РОЗДІЛ 2. Методика організації контролю знань з теми «Взаємодія попиту та пропозиції» 2.1. Роль курсу «Основи економіки» в загальній системі освіти Країна зробила перший крок у ста­новленні шкільної економічної освіти. Однак коло невирішених ...

Скачать
198737
17
8

... у фінансовій сфері. Таке означення показує, що ці задачі можуть використовуватися протягом всього учбового процесу. Останнім часом посилився пошук шляхів активізації пізнавальної діяльності учнів у процесі навчання математики за допомогою задач. Введення математичних задач фінансового змісту в шкільний курс ґрунтується на засадах та принципах процесу активізації пізнавальної діяльності учнів. ...

Скачать
218746
21
0

... нтуватися на використання підручників [53; 54; 5]. У класах фізико-математичного спрямування доцільно орієнтуватись на використання підручників [53; 54; 5; 1].   РОЗДІЛ 2 ОСОБЛИВОСТІ ВИВЧЕННЯ МАТЕМАТИКИ У ПРОФІЛЬНИХ КЛАСАХ В СУЧАСНИХ УМОВАХ 2.1. ОСНОВНІ ПОЛОЖЕННЯ ПРОФІЛЬНОЇ ДИФЕРЕНЦІАЦІЇ НАВЧАННЯ МАТЕМАТИКИ Математика є універсальною мовою, яка широко застосовується в усіх ...

0 комментариев


Наверх