В.М. Гончаров
Изучение развития колебательных процессов в испытуемых изделиях, путем проведения исследований одиночных импульсных сигналов излучаемых данным изделием, требует знания их параметров. Эти параметры должны позволять воссоздавать наиболее полную картину сигнала в частотной и временной области. Основными такими параметрами сигнала являются: энергия сигнала, пиковая мощность, длительность сигнала, несущая частота, количество посылок в сигнале.
Необходимость их измерения заключается в следующем:
Энергия импульса позволяет определить критерии стойкости измерительной аппаратуры и выяснить энергетические возможности разрабатываемых источников.
Пиковая мощность сигнала позволяет определить процессы развития колебаний и характеризует его способности.
Измерение длительности радиоимпульса позволяет выяснить механизм происходящих процессов.
Количество импульсов позволяет уточнить динамику процессов в источнике, сразу определяя параметры радиотехнических процессов, одновременно характеризуя поведение механических процессов.
Комплексный анализ этих данных позволяет практически выяснить сущность протекающих в одноразовых источниках процессов, уточнить параметры физической модели, и своевременно внести коррективы в разрабатываемые источники.
Для измерения параметров импульсного электромагнитного излучения, группой разработчиков института Радиофизики и электроники НАН Украины, разработан базовый блок спектрометра. Он позволяет измерять энергию одиночного электромагнитного импульса W, максимальное значение пиковой мощности сигнала Р, длительность входного сигнала T, и количество импульсов в сигнале N.
Принцип работы спектрометра ИПИЭИ-1
Структурная схема прибора показана на рис.1. Она состоит из следующих узлов. Входного фильтра, детектора, каналов измерения - энергии импульса, пиковой мощности и длительности импульса. Для управления узлами спектрометра, обработки результатов измерений и вывода данных на индикатор используется контролер. Прибор работает следующим образом. Сигнал с антенны поступает на входной фильтр, и далее на детектор. С выхода детектора огибающая исследуемого сигнала поступает на входной усилитель, обеспечивающий необходимое усиление в полосе частот согласованных с параметрами обрабатываемых сигналов. Выходной сигнал усилителя поступает на три канала обработки -канал измерения энергии импульса, канал измерения пиковой мощности и канал измерения длительности. Принцип работы этих каналов измерения энергии и пиковой мощности основан на преобразовании измеряемого параметра в квазипостоянное напряжение. Для этого в канале измерения энергии входной сигнал интегрируется, а затем после усиления и дальнейшей обработки поступает на предварительный расширитель длительности импульса. В канале измерения пиковой мощности входной сигнал сначала проходит предварительную обработку, а затем также поступает на расширитель входного сигнала. Измерение длительности импульса производится путем преобразования время - амплитуда. Для этого сигнал выхода усилителя поступает на быстродействующий амплитудный дискриминатор на формирующий на выходе прямоугольный импульс, длительность которого определяется параметрами входного сигнала. Далее этот импульс поступает на преобразователь время-амплитуда. На выходе преобразователя формируется пилообразный выходной сигнал, передний фронт которого равен длительности входного сигнала, а амплитуда напряжения определяется длительностью входного сигнала. В случае если входной сигнал состоит из нескольких входных импульсов, на выходе преобразователя амплитуда выходного сигнала пропорциональна сумме длительностей импульсов. С выходов каналов измерения энергии, пиковой мощности и длительности сигнала напряжения пропорциональные преобразованным параметрам поступают на входы соответствующих амплитудных детекторов. Это необходимо для уменьшения ошибки в промежутке времени между окончанием преобразований и в период считывания и обработки полученных результатов, а также для согласования с аналого-цифровым преобразователем (АЦП). С выходов амплитудных детекторов напряжения пропорциональные уровням соответствующих параметров сигналов поступают на плату контролера в и далее на АЦП. По окончании выходного сигнала управляющий процессор выдает команду АЦП на считывание, поступающих на его вход, сигналов. АЦП последовательно считывает поступившие уровни напряжений, а затем процессор после считывания соответствующих им параметров из таблиц калибровки, зашитых в соответствующие устройства памяти, передает их для индикации на дисплей. Для подсчета количества импульсов использован выход дискриминатора, сигнал с которого поступает на, расположенный на плате контролера, быстродействующий счетчик.
Алгоритм работы прибора предусматривает работу прибора в диалоговом режиме с оператором и проверку работоспособности аккумуляторных батарей. Для уменьшения температурных погрешностей прибор калибруется в различных температурных диапазонах, а данные результатов калибровки зашиваются в соответствующую область памяти. Устранение погрешности связанной с температурным прогревом элементов при включении прибора достигается за счет введения 2-х минутного интервала после чего встроенный процессор осуществляет внутреннее тестирование напряжений на аккумуляторах и начальных напряжений амплитудного детектора и только при их нормальных значениях разрешается дальнейшая работа с прибором. Наличие процессоров позволяет организовать передачу данных результатов измерений к удаленной вычислительной машине.
Общий вид спектрометра ИПИЭИ-1 изображен на рис.2
Рис1. Блок схема спектрометра ИПИЭИ-1.
Технические характеристики спектрометра ИПИЭИ-1
1. Диапазон рабочей частоты - 9,38 ГГц, = 3 см.
2. Полоса пропускания в рабочем диапазоне = 450 МГц.
3. Эффективная площадь антенны S = 1,38 см .
4. Диапазон измеряемой энергии излучения Е дж, от 0,02 T 10 до 3,7T10.
5 Диапазон измеряемой мощности излучения P Вт, от 0,05 T 10 до 5,0 T 10.
6. Диапазон измеряемой длительности импульса излучения сек, от 0,30 T10 до 550 T10.
7. Количество измеряемых импульсов в одном измерении не более 100.
8. Измерительный приемник выполнен в виде моноблочной конструкции с автономным питанием амплитудой 12 В.
9. Емкость источников питания не менее 1,2 А/ч.
10. Измерительный приемник энергии СВЧ - излучения имеет выходные, защищённые от СВЧ - наводок, разъемы для подзарядки аккумуляторных батарей, дисплей прибора также защищён от наводок.
11. Габариты блока не более 300х600х400мм.
12. Масса измерительного приемника не более 10кг.
Прибор прошел испытания в полевыхусловиях.
Список литературы
Для подготовки данной работы были использованы материалы с сайта http://www.laboratory.ru
Похожие работы
... связано с приложением теории в технике связи - рассмотрением проблемы разработки конкретных методов и средств кодирования сообщений, то совокупность излагаемых вопросов называют теорией информации и кодирования или прикладной теорией информации. Другая точка зрения состоит в том, что глобальной проблемой теории информации следует считать разработку принципов оптимизации системы связи в целом. В ...
... источника. Разумеется, для правильного выбора кода надо знать информационные характеристики источника сообщений и характеристики используемого канала связи. Физические характеристики канала и сигнала. Обычно телемеханические сигналы передаются посылками электрического тока по проводным линиям связи, но иногда используется и радиоканал. В обоих случаях перенос электромагнитной энергии сигналов ...
... с линией связи для формирования канала утечки. 3. Доказательства уязвимости ВОЛС Почти все преимущества ВОЛС не вызывают сомнений, но тезис о хорошей защищенности волоконно-оптической линии связи требует разъяснений [2]. Определимся, что применительно к ВОЛС это означает невозможность перехвата информации без физического нарушения целостности волоконно-оптической линии и отсутствие ...
... , в том числе организационные проблемы, цели, окружение. Такие интервью дают материал для концептуальной платформы информационно-коммуникационной стратегии. - анализа задачи. На данном этапе исследуется информация о коммуникациях в организации, целевых группах, и о том, какие методы оценки будут применяться для определения эффективности будущей информационно-коммуникационной стратегии компании. ...
0 комментариев