Журнал "Клад истины" http://webcenter.ru/~gaspdm
Второй Закон Термодинамики, как и Первый (Закон сохранения энергии) установлен эмпирическим путем. Впервые его сформулировал Клаузиус: "теплота сама собой переходит лишь от тела с большей температурой к телу с меньшей температурой и не может самопроизвольно переходить в обратном направлении".
Другая формулировка: все самопроизвольные процессы в природе идут с увеличением энтропии. (Энтропия - мера хаотичности, неупорядоченности системы).
Рассмотрим систему из двух контактирующих тел с разными температурами. Тепло пойдет от тела с большей температурой к телу с меньшей, до тех пор, пока температуры обоих тел не выровняются. При этом от одного тела к другому будет передано определенное количество тепла dQ. Но энтропия при этом у первого тела уменьшится на меньшую величину, чем она увеличится у второго тела, которое принимает теплоту, так как, по-определению, dS=dQ/T (температура в знаменателе!). То есть, в результате этого самопроизвольного процессаэнтропия системы из двух тел станет больше суммы энтропий этих тел до начала процесса. Иначе говоря, самопроизвольный процесс передачи тепла от тела с высокой Т к телу с более низкой Т привел к тому, что энтропия системы из этих двух тел увеличилась!
Заметим, что, рассматривая эту систему из двух тел, мы подразумевали, что внешнего теплопритока в нее или теплооттока из нее нет (для простоты, чтобы не пудрить себе мозги) - то есть, считали ее изолированной (или замкнутой). Отсюда еще одна формулировка Второго Закона Термодинамики: "При прохождении в изолированной системесамопроизвольных процессов энтропия системы возрастает". Или: "Энтропия изолированной системы стремится к максимуму" - так как самопроизвольные процессы передачи тепла всегда будут происходить, пока есть перепады температур.
А что будет, если наша система из двух тел будет неизолирована (незамкнута) и, допустим, в нее поступает тепло? Ясно, что ее энтропия будет увеличиваться еще больше, так как при получении телом теплаэнтропия его увеличивается (dS=dQ/T).
Но для простоты формулировки этот момент обычно не упоминают и поэтому формулируют Второй Закон термодинамики именно для изолированных систем. Хотя, как мы видим, он действует точно также и для открытых систем в случае поступления в них тепла.
И представьте, эти идиоты эволюционисты уперлись в общепринятую формулировку Второго Закона термодинамики для изолированных систем, утверждая, что, мол, если система открыта, то Второй Закон Термодинамики не действует! Это какими же тупыми и безмозглыми надо быть, что даже мозгами чуть-чуть лень пошевелить, чтобы понять такую простую истину, что для открытой системы с подведением тепла энтропия растет даже быстрее, чем для изолированной!
Дмитрий Таланцев
Свои отзывы и замечания присылайте по адре
Похожие работы
... в другую. Процессы переноса теплоты представляют собой процессы обмена внутренней энергией между элементами рассматриваемой системы в форме теплоты. Общая характеристика и формулировка второго закона термодинамики Естественные процессы всегда направлены в сторону достижения системой равновесного состояния (механического, термического или любого другого). Это явление отражено вторым законом ...
... , или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу. Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии. Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях ...
... уравнением (11). Энтропия вещества изменяется только тогда, когда изменяется его внутренняя энергия. Независимая от внутренней энергии трактовка энтропии противоречит самой сути второго закона термодинамики. Несложно путем равенства совместить уравнения (3) и (11). При P = const: TdS = dU = dq – dw (12) Согласно Р. Клаузиусу (1865) энергия мира постоянна, энтропия мира стремится к ...
... : для всех происходящих в замкнутой системе тепловых процессов энтропия системы возрастает, максимально возможное значение энтропии замкнутой системы достигается в тепловом равновесии: rS і 0. Данное утверждение принято считать количественной формулировкой второго закона термодинамики, открытого Р.Ю.Клаузиусом (его молекулярно-кинетическое истолкование дано Л.Больцманом). Идеальному случаю — ...
0 комментариев