тобто від полів неможливо однозначно перейти до струмів та напруг у техніці НВЧ – нестрога процедура. Існує декілька варіантів цього переходу.
.
Це – незалежні визначення, які не дають . Опір хвильовода теж можна визначити по-різному: , , . Ми будемо користуватись: . Бачимо, що додаються ще параметри хвильовода .
Нормовані струми і напруги.По аналогії з КМ , можна ввести . Будемо вважати - напів-напруга, напів-струм.
Стоячі хвилі в лініях передачі.Хвиля у прямому напрямку з напругою : . Струм . Відбита хвиля: ; , (мінус – бо струм у зворотному напрямку). Очевидно, загальні напруга і струм: , . Повні напруга і струм складаються з парціальних напруг і струмів хвиль, які існують в хвильоводі. У кожній точці відношення називається повним імпедансом лінії передачі.
Підрахуємо повний імпеданс лінії передачі:
; .
Таким чином, повний опір залежить від координат. Опір в точці (в точці навантаження): . Тоді (**), де - коефіцієнт відбиття, при . Підставляючи (**) в (*), одержимо: .
Отримали вираз для опору в будь-якій точці. Якщо , тобто ми розглянули точку знаходження навантаження, маємо опір .
В залежності від відстані до опору змінюється опір лінії. Це суттєва відмінність НВЧ від звичайної електроніки.
Для того, щоб взнати опір в будь-якій точці, необхідно знати опір хоча б в одній точці лінії передачі. Якщо лінія закорочена в , то .
від точки КЗ буде на відстанях, кратних .
Існує метод визначення опору без КЗ.
Введемо коефіцієнт стоячої хвилі. до хвилі, що біжить, відбита хвиля додається чи віднімається: , , - коефіцієнт стоячої хвилі.
Визначимо опір в точці : , . Очевидно, : , : .
Отже: , .
Нехай - відстань між та мінімумом, тоді буде , звідки (****).
Існує діаграма з розрахованими опорами (див. Мал.): по куту відкладається , по радіусу - . .
Однакові значення з’єднані лініями –
Однакові значення з’єднані лініями –
На цих лініях вказано значення активного та реактивного опорів. В центрі кола .
Лекція 21 Виявлення сигналів НВЧ.
Звичайний осцилограф використати неможливо – вони працюють на частотах до 1ГГц. Зараз використовують напівпровідникові детектори.
Кристалічні детектори: квадратичний детектор.Вони реєструють 1011ГГц так само як і 100Гц. Такий детектор (див. Мал.) вставляється одним боком в один хвильовід, а другим у інший (див. Схему):
Еквівалентна схема діода-детектора:
Ідеальна частота , оскільки лише та покращити не можна. Зараз досягли .
Залежність струму НП діоду від напруги: .
(нас цікавить квадратичний детектуючий елемент).
Метод комплексних амплітуд тут застосувати не можна, бо втратимо ефект детектування. .
Отримаємо потужність . ; ; ; . Тоді . В результаті ми можемо зобразити діод генератором струму: .
Звичайне значення .
вважається гарним параметром. Це і є квадратичний детектор, оскільки струм пропорційний потужності.
Визначимо потужність, яку цей діод може зареєструвати: знайдемо чутливість приймача на базі квадратичного детектора.
- для узгодження з підсилювачем, - описує шуми підсилювача. Напруга шумів: , напруга сигналу: .
- формула Найквіста.
Найквіст довів, що ширина смуги пропорційна кількості електронних ступенів вільності. У відповідності з цим виведена формула для потужності шумів: .
Якість детектора . .
Визначимо з того, що - тоді Вт.
Лекція 22 Лінійний детектор, змішувач. ; . Якщо розписати квадратний член, то одержимо:
- постійний струм, тобто .
Принципова схема супергетеродинного приймача НВЧ – діапазону. Відгук пропорційний квадрату сигналу.
Розглянемо характеристики приймача:
Втрати перетворення: , бо існують втрати на дзеркальні канали, тощо. У діапазоні 40ГГц типове значення .
Шум-фактор (класичне визначення): .
Шум завжди підсилюється більше ніж сигнал, тому показує, у скільки разів шум підсилюється більше, ніж сигнал. , бо немає схем в яких . , де - шум, згенерований всередині.
Позначено - ми виносимо джерело струму за підсилювач. Погано в формулі те, що залежить від , тобто від оточуючого середовища. Домовились, що . Тоді для добрих приймачів: , де - еквівалентна температура входу (шуму) приймача. Тоді .
Знайдемо мінімальну потужність, яку приймає приймач - шум-фактор. Він показує, у скільки разів еквівалентні шуми більше, ніж зовнішні шуми.
Визначимо для змішувача:
- бо це пасивний прилад. Для наступної схеми можна записати:
звідки - врахуємо шуми подальших каскадів. В середньому .
Вт. , бо впевнений прийом при Р в 2 рази меншій, ніж максимальній.
Балансний змішувач.Якщо уявити, що у генератора є деякий контур, то при перекритті та може виникнути биття генератора з самим собою навіть при відсутності сигналу. Балансний змішувач бореться саме з цим – він знищує гармоніки гетеродина.
Розглянемо його схему:
ГГ – гармоніка гетеродина. На двох діодах сигнал має різні полярності. Струм проміжної частоти залежить від фази на діоді. Отже струм від гетеродина буде в один бік, і на котушці приймача перетвориться в нуль. Сигнал струму буде фіксуватися окремо.
Керування параметрами НВЧ за допомогою діодів.
- діод – використовується для керування амплітудою НВЧ.
Лекція 23 Вимірювання опорів.
Узгодження опорів – задача про проходження хвиль між перешкодами без відбиттів. Однак, спочатку треба виміряти ці опори.
Метод вимірювальної лінії: вимірювальна лінія – це зонд, який переміщується в середині хвильовода і реєструє відповідні струми (пучності чи мінімуми).
Крім того, визначаються координати мінімуму і вимірюються відстані від мінімуму до навантаження, звідки: . Підключаємо між генератором і навантаженням вимірювальної лінії, потім визначаємо .
Узгодження опорів.Треба зробити, щоб стержень в хвильоводі забирав максимум енергії. Це можливо при узгодженні опорів.
Нехай в лінію з опором підключили навантаження . , тому частина енергії відбивається. Можна паралельно підключити лінію з закороткою, яку можна рухати вздовж лінії. Це шлейфовий трансформатор або тромбон. Опір шлейфа: . Ми ставимо закоротку на кінці шлейфу, , тоді . Таким чином ми можемо ввести в лінію будь-який реактивний опір (закоротка не вносить активного опору).
Нехай . Визначимо опір лінії у довільній точці : .
На діаграмі ці опори розташовані на колі з центром в (0,0) та радіусом (опір ) – це коло відповідає незмінному КСХ, він дійсно постійний для лінії. В точці перетину кола з маємо . Цій точці відповідає певна точка на хвильоводі. Якщо в цій точці підключити шлейф, то реактивний опір можна міняти як завгодно. Також можна зробити так, що - тоді не буде відбиття.
Фізично шлейф компенсує відбиту хвилю, тобто створює таку ж за амплітудою і протилежну за фазою.
Розглянемо схему з двома шлейфами:
Знайдемо опір у місці підключення першого шлейфу, зумовлений .
Для цього йдемо по пунктирному колу (див. Діаграму нижче) на відстані, відповідній .
Ми можемо змінювати шлейфом реактивний опір, залишаючи активний постійним.
Знову зсуваємося на відстань між двома шлейфами.
Аналогічно другим шлейфом змінюємо активний опір. В результаті прийдемо в точку А, де КСХ значно менший ніж початковий. Ми не отримали ідеальне узгодження. З теорії: узгодження при фіксованих відстанях між шлейфами можна створити при наявності 3-х шлейфів.
Ми змінювали опір шлейфа так, щоб опинитись на , тому, що ми отримаємо найменший КСХ. Виявилось, що можна придумати метод, яким КСХ можна створити ще меншим.
Лекція 24 Чвертьхвильовий трансформатор.
Нехай маємо два хвильоводи: , ; та стоїть задача передати енергію з одного в інший. Це можна зробити, з’єднавши їх відрізком хвильоводу з деяким опором .
Виявляється, що , для узгодження. Підрахуємо це: . Тут , тоді , це фактично резонансний пристрій.
Для широкосмугового узгодження роблять багато “східців”:
Або ж плавний перехід (однак він більш довгий):
Узгодження в МЕ.
Потрібно щось увімкнути між генератором та опором, щоб виділялась максимальна потужність. Зробимо так як показано на малюнку:
Підрахуємо опір в точці а: , , , , тобто . Таким чином маємо коливальний контур на частоті . Тобто, - це повинно дорівнювати , тобто - цим умовам має задовольняти контур .
Таким чином, для узгодження опір необхідно включати в паралельний коливальний контур. Тепер ми знаємо повну теорію узгодження.
Щоб збільшити ширину смуги пропускання, використовують більш складні ланцюги, це зв’язані ланцюги, тут смуга пропускання ширша:
А що робити, якщо необхідно узгодити комбінований опір, наприклад . В таких випадках включають послідовно : , а потім узгоджують так само як і в попередньому випадку.
Взагалі, використовують два методи:
Комбінація штирів.
Комбінація .
Лекція 25 Заміна ліній передачі зосередженими елементами.
Для лінії передачі: . Для чотириполюсника на зосереджених елементах: .
Для того, щоб можна було провести заміну лінії на зосереджений чотириполюсник, необхідно, щоб вирази для їх були еквівалентні. Прирівнявши, одержимо: , , .
Розглянемо схеми які використовуються на практиці:
ПФВЧ: , .
ПФВЧ: , .
Задача: Представимо - трансформатор у вигляді зосереджених елементів ТФВЧ.
, , , , .
- опір .
трансформатора
, звідки .Таким чином, конструктивно цей перехід виконується так:
Задача: Узгодження транзистора. , . Треба узгодити з лініями 50 Ом.
1,2
5
10
1,5
Для цього перетворимо еквівалентну схему:
Отже, ця схема - узгоджена.
Лекція 26 Вимірювання потужностей НВЧ.
НП – детектори не можуть використовуватись для вимірювання, бо з часом вони самі змінюються, тобто не існує однакових НП – детекторів. Найбільш точні методи – калориметричні, але вони розраховані на великі потужності (>1Вт). Використовують термістори і болометри:
•- НП-бусинка. Це все поміщують у термостат. Але це знову ж дає мало переваг у порівнянні з НП-детекторами.
Тоді можна записати:
, звідки маємо .
Перевага бусинки - в електроніці. Намалюємо вимірювальний міст: - з’являється тому, що НВЧ нагріває по поверхні, а батарейка - по об’єму.
Спочатку міст балансується опором тобто гальванометр нічого не показує.
Подаємо НВЧ, тобто болометр перегрівається, баланс порушується. Для встановлення балансу опір збільшуємо так, щоб загальна потужність: . Для точності використовують . Інколи потрібно зменшити падаючу потужність. Для цього використовують атенюатори (поглинаюча пластина, що вставляється в хвилевід). Вони можуть зменшувати потужність на 30-40 дБ. Існують прецизійні атенюатори, точність 0,01 дБ:
, а потужність, що поглинається, . А залежність кута можна визначити точно.
Існують направлені відгалужувачі:
У випадку, зображеному справа, потужність йде в одному напрямку:
Лівий відгалужувач реагує лише на відбиту хвилю, правий – на падаючу. Компаратор автоматично рахує Г.
У мікроелектроніці використовують мікросмужкові шлейфові відгалуджувачі.
Існують розподілені розгалджувачі – (для верхньої смуги пропускання) – тут випромінює щілина.
Записуємо за принципом Гюйгенса: , проінтегрувавши одержимо:
, коефіцієнт направленості - можливо таке, що . При - це направлений відгалужувач. Однак, розміри цього відгалужувача пропорційні довжині хвилі, що дуже багато. Тому використовують відгалужувач Бете:
Виявляється, що зв’язок цього хвильоводу з трубами існує по ЕМП, і фаза зв’язків по ЕП та МП – різна. Розглянуто зв’язок по ЕП, тепер по МП:
- тобто хвиля піде лише у ліву трубу: від діелектричного зв’язку все “+”, від магнітного “+” та “-“, тобто в правій трубці . Хвиля піде у ліву трубу.
Лекція 27 Вимірювання довжини хвилі та частоти.
Найпростіший вимірювач – вимірювальна лінія. Намалюємо її:
Тут максимум та мінімум – нечіткі, тому краще помістити у резонатор:
. Це – ВСТ, хвильоводи середньої потужності. Для більшої точності є гетеродинні вимірювачі частоти, котрі працюють зі стандартними генераторами частот.
Гетеродином може бути кварц чи молекулярний випромінювач на (точність 10-12), також іноді використовується ефект Мьосбауера (точність 10-17).
Випромінювання затухання.
Розглянемо метод відношення потужностей:
Якщо детектор лінійний, то , якщо ж детектор квадратичний, то .
Однак, цей спосіб неточний, він залежить від приладу. Тому існує його модифікація – метод еталонного атенюатора. Тут використовується прецизійний атенюатор:
, - незалежно від властивостей детектора, бо на ньому завжди 100 поділок.
Особливості техніки міліметрових та субміліметрових хвиль.Виготовлення хвилеводів під субміліметрові хвилі проблематичне бо характерні розміри хвильоводу мають порядок 0,1мм. Втрати: , . Тобто такі хвилеводи використовувати неможливо. Межі застосування:
Смужкові – до 300-400 ГГц.
Мікросмужкові – до 100 ГГц.
Коаксіальні кабелі – до 50 ГГц.
Потреба в освоєнні даного діапазону пов’язана із “забитістю” інших.
Діелектричні хвильоводи для теж погані, бо ці частоти відповідають оптичним фотонам у ТТ – ЕМХ замість розповсюдження починає збуджувати коливання атомів ТТ. Це – фундаментальна проблема, її не можна “обійти”.
Тому роблять так звані лінзові хвильоводи – чим менше діелектрика, тим менше втрати. Тому намагаються зменшити кількість лінз за рахунок збільшення фокусної відстані. Однак, завжди є дифракція. Чим більша фокусна відстань, тим більші втрати, пов’язані з дифракцією. Фокусна відстань Релея - це максимальна фокусна відстань лінзи.
Втрати лінзового хвильоводу 1-1,5 . Для виготовлення лінз використовують тефлон. Для того, щоб змінити напрямок розповсюдження, можна поставити дзеркало.
Розглянемо ряд приладів на основі лінзових хвильоводів:
Напрямлений відгалуджувач: аналог в НВЧ (див. Мал. Справа): відгалуджує хвилю А, не реагує на хвилю В. непівпрозоре дзеркало створює такий ефект в оптиці (див. Мал. Зліва).
Резонатор. Плоскопаралельний дзеркальний резонатор: . Служить для відбору хвиль певної довжини.
Можна використати розділення і злиття хвиль. Важлива фаза після проходження та .
Лекція 28 Генерування та підсилення НВЧ. Підсилювач на тунельному діоді.
ВАХ тунельного діоду має від’ємну ділянку, де . Будь-який діод можна представити еквівалентною схемою:
В термінах цієї схеми буде (тут ми врахували опір переходу ). Звичайні значення . Підрахуємо загальний опір діоду . Знехтуємо паразитичною ємністю , тоді , тут введено позначення: , . У формулі - по модулю, тобто його від’ємність вже враховано. Графічний вигляд опору чи іншої комплексної величини, де параметром є частота, представляється годографом. Зобразимо його:
- це резонансна частота діода, вона відповідає чисто реактивному опору. - гранична частота, на якій опір перестає бути від’ємним.
Може бути картина, коли
Похожие работы
... : будемо враховувати поле лише у заштрихованій ділянці, оскільки тут більша частина (тому, що ця потужність зумовлена ємністю, а вона сконцентрована в цій ділянці). - характеризує якість лінії, але частіше використовують добротність лінії: , де (по аналогії з добротністю КК: ). Для Хвильоводів - ; Коаксіальних кабелів - ; Мікросмушкових ліній - . Оцінимо довжину хвильовода, в якому ...
... возбуждаются первым вводом, либо применить оба этих способа. СВЧ нагрев движущихся диэлектрических лент и изделий круглого поперечного сечения Применение СВЧ нагрева движущихся лент позволяет существенно поднять производительность установок нагрева и во многих случаях значительно улучшить качество выпускаемой продукции. Так, полимеризация в СВЧ полях капроновых канатов увеличивает их ...
... , тщательного продумывания направления дальнейшего расчета и за счет использования ЭВМ с большим быстродействием. 8. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА Анализ условий труда оператора вычислительной техники с оценкой тяжести и напряженности труда Согласно ГОСТ 12.0.002-74 опасным производственным фактором считается фактор, воздействие которого приводит к травме. Вредный производственный фактор ...
... изготовлены и разложены по полкам на складе исходные материалы, начинается изготовление деталей. Для изготовления деталей ламп применяются те же способы, что и в технике вообще. Но одни применяются чаще, другие реже, а третьи – в каких-то вариантах или модификациях. Например, реже применяется механическая полировка – потому что при ней в поверхность внедряются загрязнения. Вместо нее используют ...
0 комментариев