Электростатика.
Способность к электризации. - способность тел притягивать к себе предметы.
Эти тела оказ. заряженными.
Q=ne Q - заряд тела n=1,2,...
Заряды приобретаемые при электризации всегда кратны е и заряды явл. дискретными.
Сущ. три способа электризации тел.
1) Электризация через трение - трибоэлектризаия.
2) Электризация наведением (явление электростатической индукции).
3)Электризация с помощью электритирования.
Электрическ. заряды сохр. на заряженных телах различное время в зависемости от способа электризации в1) и 2) - короткое время , 3) - годы и десятки лет.
В замкгутой системе электриз тел (нет обмена зарядами с внешними телами) алгебраическая сумма эл. зарядов остается постояной при любых процессах происходящих в этой системе.
Qi=const
i
Точечный заряд это физич. абстракция.
Точечным зарядом принято называть заряж. тело розмера которого малы по сравнению с расст. до точки исследования.
Одноименные заряды отталкиваются, разноименные притягиваются.
Зак. Куллона.
Сила взаимодействия междуточечными неподвиж зарядами
q1 и q2 прямопропорцианальны величине этих зарядов и обратнопропорц. расст. между ними.
F=k((q1q2)/r2
k=1/40 0=8,8510-12 Ф/M
0 - фундоментальная газовая постоянная назв газовой постоянной.
k=9109 M/Ф
Зак. Куллона (в другом виде)
F=(1/40)q1q2r2
вакуум =1
F=(1/40)q1q2r2
для среды 1
Если точечн. заряд поместитьв однородн. безгранич.среду куллоновская сила уменьшится в раз по сравнению с вакуумом. - диэлектр. проницаемость среды.
У любой среды кроме вакуума >1.
Зак. Куллона в векторной форме.
Для этого воспользуемся единичным ортом по направлению вдоль расстояния между двумя зарядами.
_ _ _ _
er=r/r r =err
_ _
F=(1/40)q1q2r)r3 векторная форма
В Си - сист единица заряда 1Кл=1Ас
1Куллон - это заряд, протекаемый за 1 с через все поперечное сечение проводника, по которому течет
то А с силой 1А.
Зак.Куллона может быть применен для тел значительных размеров если их разбить
на точечные заряды.
Кулл. силы - центральные, т.е.
они направлены по линии соед.
центр зарядов.
Зак. Куллона справедлив для очень больших расстояний до десятков километров. При уменьш. расст. до 10-15 м справедлив, при меньших несправедлив.
Электростатич. поле.
Хар. электростатич.поля.
_ _
(Е, D,)
В пространстве вокруг эл. зарядов возникает электростатическое поле (заряды не подвиж.).
Принято считать, что электростатическое поле является объективной реальностью. Обнаружить поле можно с помощью пробных электрических зарядов.
Пробн., полож., точечный заряд должен быть таким, чтобы он не искажал картины иследуемого поля.
Напр. электростатич. поля.
_
Е - напряженность электростатического поля. Напряженность электростатического поля является силовой характеристикой.
_ Напр. поля в данной
Е=F/q0 точке пространства
явл. физ. вел. численно равная силе (куллоновск.)
действ. в данной точке на единичный неподвижный пробный заряд.
[E]=H/Кл [E]=В/м
Силовая линия - линия, в каждой точке которой напр. поля Е направлена по касательной.
Силовые линии строят с опред.
густотой соответствующей модулю напр. поля: через площадку 1 м2 проводят количество линий Е равное модулю Е.
При графическом представлении видно, что в местах с более
густым располож. Е напр. больше.
Вывод формул для напр. поля точечн. заряда.
q - заряд создающий поле.
q0 - пробн. заряд.
Е=(1/40)qq0)/(r2q0)
E=(1/40)q/r2
Из E=(1/40)q/r2 следует что Е зависет прямопропорцианально величине заряда и обратнопропорц. расст. от заряда до т. исследов.
В однородн. безгр. среде с 1
(>1) напр. поля уменьш. в раз.
E=(1/40)q/r2
_
E=(1/40)q2/r3
Электрическое смещение.
_
Опред. формулой для D явл. следущее в данной т. среды электрическое смещение численно равно произвед. диэлектр. проницаемости, эл. постоянн. и напр. поля.
_
DE D=0E
[D]=Кл/м2
Напр. эл. поля завсет от среды поэтому при наличии несколбких граничащих диэлектриков на границе разрыва двух сред напр. поля меняется скачком (линии
_
вектора Е терпят разрыв).
_
Вектор D не завис. от среды т.е. явл. однаков. по величине
_
во всех средах т.е. скачка D нет , разрыва нет.
_
Покажем что D независ от .
D=0(kq)/(0r2)
D=(1/4)q/(r2)
Потенцеал поля.
Силы электростатич. поля консервативные т.е. независ. от траэктории движения заряда.
_
F=- gradП
Fx= -П/x аналогич Fy и Fz
1) F= - dП/dr
Для электростатич. сил F=f(r).
Воспользуемся этой зависемостью для введения третей характеристики поля - потенцеала.
Преобр. 1)
2) dП= - Fdr F - куллоновская сила взаимодействия между двумя точечн. зарядами q и q0.
F=k(qq0/r2) Подставим F в 2) и проинтегрируем лев. и прав. часть.
3) dП= -k(qq0/r2)dr из 3)
П= -kqq0dr/r2=
=kqq01/r)+C
Разделим лев. и прав. часть 4) на q0.
5)=П/q0=(1/40 )q/r)+C
6) =П/q0 Потенцеал поля в данной точке численно равен потенцеальной энерии пробного заряда помещенного в данную точку.
[]=B=Дж/К
7) =(1/40 )q/r) при =0 rd при r=const ,
1/r при q=const
При q>0 >0 +
При q>, p=q, =1 , r=OC
E - ?
_
E=2Пр.Е+
Е+=Е_ в силу симметрии зар.
Е+=Е_=k(q/(r)2)
E+/E_=cos= /2r
Пр.Е+=Пр.Е_=Е( /2)
E=2Пр.Е+=2Пр.Е
Пр.Е+=Е+сos=(kq/(r)2)
/2r
Пр.Е+/E+=cos E+
rr при r>>
E=2(kq/(r)2)=kq /(r)3=
=kp/r3
(неправильно)
E=k(p/r3)
_ _
Потоки D и Е.
Пусть электростатическое поле будет однородно т.е. такое
_
поле у котор. D=const и все линии поля по направлению , введ. в это поле плоск. поверхность площадью S, строем нормаль.
_
Пр.D=Dncos
поток D D=DcosS
1)D=Dncos
_ _
Потоком D или E назв. физ. вел. числ. = кол - ву. линий
_ _
D или Е пронизывающих исследуемую поверхность при
_ _
условии D или Е поверхности.
Е=ЕnS 2)
[D]=Кл [Е]=Вм
Поток характеристика скалярная, алгебраическая.
При 0
При R (вне шара)
2) rER (скачок)
вн сн вн сн
Завис. Е(r)
При срR, то внутрь поверхности попадает
весь заряд и по теор. Гаусса
4r2E=Q/0 , откуда
E=(1/40)Q/r2 (r R)
Если r0 - исток расхождения. Если 0 ж>1
Из 2) ж -const
Покажем что вектор поляризации равен (для точек взятых внутри диэлектрика).
Ю= '
Пусть во внеш. поле Е0 нах. массивный образец.
V=S
Независимо от способа поляриз. справа будет +' , справа -'.
_
Pi =q=S'=
i
Ю='S/S ='
Эл. поле внутри диэлектрика.
Вектор эл. смещения.
Рассм. поляризацию однородного , изотропного диэлектрика (ж -const) внесенного во внеш. однородное поле поле Е0 образованное плоским конденс.
На образце появятся поверхностные связанные заряды.
+' , -'. _
Связ заряды созд. поле Е'
_
напр противополож. Е0.
_ _ _
Е=Е0+Е' Е= Е0+Е'
Е=Е0 - '/0=E0 - ж0E/0
E+жE=E0
(1+ж)= E0
1+ж=
E=E0/ - напряженность поля в диэлектрике внесенного во внеш. поле Е0.
Напряженность поля в диэлектр. Уменьшется в раз при условии что на обкладках конденс. остаются постоянными.
Если диэлектрик вносится в плоский конденс. подключенный к источнику напряжения , напряженность остается =Е0.
Е=Е0
0Е=0Е0 D0=0Е0
D=D0=
В таком случае эл. смещение одинаково в вакууме и в диэл.
Лекция.
=const E=Е0/0
E созд. всеми видами зарядов как свободными так и связанными.
D = D0
диэл в возд
U=const
=const
Е0=E
D=D0
Связь между связанными и свободными и свободными зарядами ( и' ).
Связь между и' устанавл.на основании выраж. для напряж. поля.
Е= Е0 - Е'
Е0/=Е0 - Е'
/0=/0-'/0
/= -'
'=( - 1/)
Связь между Е , D , Ю.
_ _
D=0E=(1+ж)0E=
_ _
=0E+ж0E0
_ _
D=0E+Ю - связь
Теор. Гаусса при наличии диэлектриков.
Для воздуха и для вакуума две равные теор. Гаусса.
1) ѓDnds=qi
S i
2) 0Ends=qi
i
1)=2)
При наличии деэлектриков значимость 1) и 2) различна. В формуле 2) при наличии диэлектрика в прав. часть надо добавить алгебраич. сумму всех связанных зарядов 2)'0Ends=qi+
i
+qi'
i
Вел. связанных зарядов зависет от Еn.
Поток вектора эл. смещения сквозь произвол. замкн поверх. равен алгебраич. сумме всех свобод. зарядов заключ. внутри поверхности.
ѓDnds=qi- теор. Гаусса
S iпри наличии диэлектрика.
Явление на границе двух диэлектриков .
Граничные условия.
Закон преломления линий поля.
До сих пор мы рассм. диэл. вносимый в поле так что поверхность его совпадала с эквипотонц. поверх. , а линии
_ _
Е и D были поверхности.
_ _
Каково направление Е и D
_ _
если Е и D не эквипотонц. поверх.
Для построения картины поля внитри диэлектрика нужно знать граничные условия.
Граничные условия для нормальных составляющих
_ _
Е и D.
Рассм. границу раздела двух диэлектриков.
Псть у 1) - 1
2) - 2
2>1
Пусть на границе раздела
_
двух диэлектрикриков D направлен под углом .
_ _
Расскладываем D1 и D2 на состовляющие нормальную к поверхности и танген-циальную.
_ _ _
D1=D1n+D1
_ _ _
D2=D2n+D2
Для применен. Теор. Гаусса надо построить замен. поверх.
Нухно выбрать цилиндрич поверхн.
Найдем поток вектора эл. смещения через замкн. поверх.
ФD=D2nS - D1nS
Найдем алгебр. сумму зар. попавших внутрь.
D2nSD1nS=0
S0
1) D2n=D1n
Cогласно связи.
20E2n=10E1n
E1n/E2n =2/1
2) - втор. гранич. усл. показ. каково повидение Е на грпнице: En на границе раздела двух диэл. изменяется скачком.
Граничные условия для тангенц. состовляющей.
Для получ. этих гранич. усл. воспольз. теор.о циркуляции вектора напряженности электрич поля.
ѓЕd=0
L
Нужно построить четеж для
_
Е аналогично рис 1.
_ _ _ _
(1) - Е1 Е1=E1n+E1
_ _ _ _
(2) - Е2 Е2=E2n+E2
Для применения теор. о циркул. нужно выбрать замкн. контур. В качестве замкнутого контура выбираем прямоугольник стороны котор. границе раздела , высота h0.
АВ=CD=а
Направление обхода по часовой стрелке.
ѓЕd=0 L=ABCD
L
В каждой точке на расст AB E1 этому участку.
Поэтому циркуляция E1 на AB равна
B D
ѓЕd=E1d- E2d=0
L A C
E1a - E2a=0
a0
3) E1=E2
У вектора напряженности поля при переходе через границу раздела двух диэлектриков не меняется тангенциальная состовля-ющая.
D1/10=D2/20
Используя 3) и связь между
_ _
D и E получим:
D1/10=D2/20 - 4-ое условие .
На границе раздела двух диэлектриков тангенц.
_
сoставл. D изменися.
1,2,3,4 - условия позволяют правельно построить картину линий поля.
Закон преломления линий поля.
tg2=D2 /D2n td1=D1/D1n
tg2/tg1= D2D1n/ D2nD1= =D2 /D1=2/1
5) tg2/tg1=2/1- зак. преломления линий поля.
Угол больше в той среде где больше.
Из 5) следует гуще линии поля располож. В диэлектрике где больше.
2< 1
Построить картину линий поля.
Активные диэлектрики.
(диэлектрики с особыми поляризационными свойства-ми.)
Мы рассматривали поляриза-цию однородных , изотроп-ных диэлектриков.
_ _
Ю=ж0Е
ж=const
При Е=0 у большенства диэл. Ю =0. (поляризация исчезает)
Сущ. диэлектрики с нелинейной зависемостью.
_ _
Ю от Е.
_ _
Ю ж0Е
2) Ю = f(E)
Это первый тип диэл. с особыми свойствами предста-вляет собой класс сигме-нтодиэлектриков.
У сигментодиэлектриков 2) представляет собой петлю гистерезиса.
Петля гистерезиса 1,2,3,4,5,6,1
Область 0,1 - область первич-
ной поляризации.
_ _
При уменьшении Е вектор Ю
убывоет по кривой 1,2,3.
_
При Е=0 в диэлектрике сох-
раняется остаточная поляри-
_
зация Ю 0.
_
Ю =0 в т. 3 т.е. при внеш. поле обратного направления.
Лекция.
Постоянный ток.
Проводимость металлов и газов.
Электрический ток - направленное движение зарядов.
Носители заряда - заряды создающие ток.
В электролитах - ионы
металлах - электроны
газах - ионы и электроны.
Проходимостью тока - назв. прохождение зарядов через вещество.
Типы проводимости - ионная , электронная , смешанная.
Независимо от вида проводимости для тока приняты следующие характеристики:
I - сила тока.
j - плотность тока.
Сила тока - физ. вел. численно равная заряду переносимому через поперечное сечение проводника за 1 с. (скалярная вел.)
[ I ]=A
I=q/A
1А = сила тока при прохождении которого через поперечное сечение проводника в 1 с переносится заряд в 1 Кл.
А - четвертая основная единица в Си.
Направлением тока считают направление положительных зарядов.
Если сила
тока постоянна
и направление
постоянно , то
говорят о постоянном
токе.
(1) - справедлива
для постоянного
тока.
Если сила тока меняется со временем то (1) запис. следующую 2) i=dq/dt.
На основании (2) можно получить кол- во заряда переносимого через поперечное сечение проводника за единицу времени dq=idt.
t
3) q=i(t)dt
0
Плотность тока - векторная характеристика.
По определению постоянного тока плотность тока равна
_
4) j=I/S S- току
Плотность тока - физ. вел. численно равная заряду переносимому за 1с через единичную площадку поперечного сечения расположенного току.
Если ток меняется 5) j=di/dS
формула 5) дает возможность находить силу тока.
6) di=jdS=jndS
интегрируем лев. и прав. часть.
_ _
7) i=jndS =jdS
S S
Из 7) следует что сила меняющегося тоеа численно = потоку вектора плотности тока через площадь поперечного сечения.
Единицей плотности тока явл. А/м2.
Связь между плотностью тока и скор. направленного движения носителей тока.
В любом веществе проводящем ток носители тока учавствуют в непрерывном чаотич. движ.
т=cр т- тепловая скор.
Направленное движ. это движение которое налагается на хаотич. тепл. движ. и вынуждает носителей двигаться в определенном направлении.
cр- ср. знач. скор. направленного движ.
Плотность тока явл. функцией. j=f(n, qэл, )
1) j= qэлn
Для док. рассмотрим проводник постоянного сечения цилиндрич. формы.
n - число носителей тока
qэл- известно
j=I/S=q/St
q - вел. заряда переносимого через попереч. сечение S за время t.
=
V=S=S
qv= qэлnV - через S за 1с.
q=qvt
Подставим в 2)
i= qэлnVSt/St _ _
Отсюда следует j=qэлn
Условия существования тока.
Источники тока.
Э.Д.С. источника тока.
Необходимые усл. сущ. тока.:
1) наличие носителей тока
2) наличие сил вынуждающих носителей тока двигаться
3) наличие разности потенциалов вдоль поверхности проводника.
Рассм. отрезок проводника.
Для длительного поддержания тока необходимо какимто образом положительные носители тока с конца 2 перенести на торец 1.
Движение носителей тока внутри образца происходит под действ. силы электрич. природы.
Движение зарядов прекратится очень быстро: положительные скапливаются на конце 2.
Перенос зарядов из 2 в 1 осуществить невозможно (это означало бы движения (+) против Е ).
Такой перенос можно осуществить только с помощью силы другой природы не электрич. происхождения.
Этот перенос реализует устройство называемое источником тока.
За счет действия источника тока внутри проводника появл. электрич. поле напряженностью Е.
Поскольку Е поверх. проводника , то поверх. проводника не явл. эквипотонц.
2>r (источник тока разомкнут) R.
IV) =IR Э.Д.С.= напряжению на клемах разомкнутого тока.
Газовый разряд.
Ионизация. Рекомбинация газов.
Газы явл. диэлектрками , и в обычных условиях не проводят эл. ток.
Все газы сост. из нейтральных атомов и малекул.
Если каким либо образом создать носители тока в газах , то они станут проводниками.(ионизация).
: УФ , R - лучи , - изл. , частицы - внешние ионизаторы.
Ионизация - это превращение нейтральных атомов и малекул в ионы.
Электроны в атомах удерживаются силами куллоновск. притяжения.
Для удаления электрона необходимо сообщить энергию равную или превышающую энергию его связи с ядром (инергия ионизации Ei).
Ei =от 5 до 20 эВ
Электрон и ион могут перемещаться под действ. эл. поля.
Свободн. электроны сталкиваясь с нейтральными атомами может войти в его состав создавая отрицательный ион.
В результате ионизации возник. 3 вида носителей тока: +ион , -ион , электрон.
Возникают два направленных друг к другу встречных потока образующие эл. ток.
Одновременно с ионизацией в газе происходит рекомбинация газа заключающаяся в исчезновении носителей тока.
Под действием внешнего ионизатора мощностью n.
(показавает сколько электронов образуется в 1 м3 за 1с.)
1) В нач. момент времени И>Р.
2) Спустя некоторое время И=Р n+=n_ устанавливается равновесие концетрации носителей тока n.
3) После выключения. Иb_ b=/E
Подвижность - это физ. вел. числ. = скор. упорядоч. движ. носителей тока под действием эл. поля единичной напряженности.
[b]=м2/(Вс)
1) j=en(b++b_ )E - зак. Ома.
Произведение равновесной концентрации на элементар. заряд носителей тока на сумму подвижностей и на напр. эл. поля.
2) j=E
=en(b++b_ ) =1/
- удельная проводимость
3) jн=enid
d - расст. между электродами.
ni- мощность ионизатора.
Ударная ионизация.
Самостоятельный газовый разряд.
При больших напр. поля свобод. электроны ускоряются до таких энергий которых достаточно для электронным ударом.
В обл. 4 в нутри газа появл. собственный источник ионизации , ударной ионизации.
Число электронов резко возрастает.
Лавинообразный процесс.
В обл. 4 наличие внеш. ионизации необходимо для поддеожания заряда.
При дальнейшем увеличении напр. поля в обл. 5 энергию достаточную дляионизации получают ионы.
В обл. 5 разряд становится самостоятельным. при этом сила тока увелич. Практически без изменения Е.
Напряженность при котор. происпереход из несомост. В самост. разряд. разряд назв. напряжением зажигания или пробоя.
Типы самостоятельных газовых разрядов.
1) тлеющий
2) искровой
3) дуговой
4) коронный
(в Трафимовой)
Зак. Джоуля - Ленца в интегральной и диффер. форме.
На внеш. сопротивлении в любой электрической цепи выделяется кол - во теплоты.
1) Q=I2Rt
За время t при протекании силы тока при протекании силы тока в нем выделится кол-во теплоты Q. (интегральная форма)
Получим зак. в диффер. форме.
Для этого рассм. внутри проводника с сопр. R элементарный объем dV=dSd
dR= d/dS
Запишем вместо 1) кол-во теплоты выдел. в этом объеме за время dt.
2) dQ=j(dS)2(d/dS)dt
(dQ/dVdt)=j2
3)т=j2 j=E
т =2E2=(1/)2E2
3) т =E2
Работа и мощьность тока, КПД тока.
=А*/q A=q=It
полная мощность источника тока P=A*/t=I
P=I( IR+Ir)=I2R+I2r
P=Pполез+Pбезполезн
=Pполез/P
Основные положения КЭТ.
1) При кристаллизации металлов из расплава атомы их теряют электроны. При этом возникают полож. заряж. ионы и свободные электроны. Если кажд. атом теряет по эл-ну, то nат=nэл=(D/)·Na. Своб. эл-ны способны перемещаться по всему объёму металла.
2) Все металлы имеют кристаллич. структуру, в основе которой лежит кристаллич. решётка кубич. формы с положит. ионами в узлах. Таким образом решётка прозрач. для эл-нов.
3) Своб. эл-ны, оторванные от атомов, становятся коллективной собственностью всего металла. Они соверш. хаотич. тепл. движение. При этом эл-ны ведут себя подобно одноатомным мол-лам идеал. газа, подчиняясь статистике Максвелла. Своб. эл-ны принято назыв. “электронным газом”. Для эл-нов по ф-ле, известной из МКТ можно определить сред. скор. теплового движения:
Vт=(8KT)/(m)105м/c. 4) Своб. эл-ны, сталкиваясь с ионами, расположенными в узлах решётки, отдают им свою кинет. энергию. Этим обусловлено сопротивление проводников.
5) При приложении внешн. эл. поля напряжённостью E на хаотич. тепл. движение эл-нов накладывается упорядоченное движение. При этом возникает эл. ток. V « VT
Оценим V по ф-ле j=qэлnV=enV
V=j/(en); n~1029м-3, j(Cu)=107А/м2
V~10-3м/с. Суммарн. скор.VVVT
Поскольку V « VT, то VVT
Закон Ома в КЭТ
Основные положения КЭТ позволяют вывести ф-лу закона Ома как ф-цию параметров носителей тока. Для вывода используем соотношение j=enV. Пусть к проводнику приложено внешнее поле E. Своб. эл-ны придут в движение. На эл-ны будет действ. сила со стороны поля F=eE.E=consta=const.
F=eE=ma (по II з-ну Ньют.). a=(eE)/m
Для равноуск. движ. Vt=V0+at
ср. длина своб. пробега l~d расст. между ионами; -время своб. пробега.
Скорость электрона
V=Vmax=a - до столкновения с ионом
V0=0 - после столкновения с ионом
V(V0+Vmax)/2=Vmax/2=(a/2=(eE/2m;
lVlV;
VeE)/2m] · lV;
j=enV=[(e2nE)/2m]·lVз-н Ома в КЭТ
j=E ne2l) / (2mV)
Закон Джоуля-Ленца в КЭТ
Нагревание проводника, согласно КЭТ, объясняется столкновением электронов с ионами кристал. решётки. Рассчитаем кинет. энергию отдельного эл-наперед столкновением с ионом, полученную им за счёт поля: W1=(mV2max)/2.
За 1 сек. эл-н может испытывать Z соударений, где Z = 1/=V l. Если в 1 м3 число эл-нов = n, то кинет. энергия, переданная решётке всеми n эл-нами за Z столкновений каждого из них W=nZW1=T.
T=[(mV2max)/2]·n·Z=[ne2l/2mV]E2
Затруднения КЭТ
1) Температурная зависимость проводников. Согласно экспер. данным сопр. металлов увелич. с температурой по з-ну R=R0+T, где R0-сопр. при T=273K, град-1. Для ф-ла аналогична +T. Согл. опыта ~T. =2mVTl~VT. На осн. КЭТ след. T, т.е. теория расходится с опытом.
2) Теплоёмкость металлов и диэлектриков. Согл. опвтов атомная теплоёмк. металлов и диэл-ков одинакова (C=3R, где R-газовая постоянная). Это положение наз. з-н Дюлонга и Пти. Согл. КЭТ металл сост. из кристал. решётки и своб. эл-нов, а диэлектрик своб. эл-нов не имеет. Следует ожидать, что теплоёмк. металлов=т.ё. кристал. решётки+т.ё. своб. эл-нов (Cмет=R+3/2R=4,5R), чего нет на опыте.
Электронный газ, на самом деле подчиняется не классической статистике Максвелла, а квантовой статистике. Затруднения устраняются в квантовой теории проводимости. Несмотря на затруднения, КЭТ она проста и широко применяется при высоких темп-рах и малых концентрациях.
Электромагнетизм
Магн. поле. Движ. заряды в окруж. пространстве создают магн. поле, которое явл. одной из форм сущ. материи. В отличие от эл. статического поля, магнитное действует только на движ. заряды. Проводники с текущими по ним токами в окруж. пр-ве создают магн. поле. Принято различать макро- и микротоки. Макротоки-это токи, текущие по проводникам. В любом вещ-ве электроны движутся по круговым орбитам. Движение эл-нов в атоме по круговым орбитам тоже приводит к созданию магн. поля. Токи, создаваемые в веществах движущимися эл-нами называют микротоками.
Гипотеза Ампера: в каждом вещ-ве за счёт движения электронов возникают микротоки.
Для исслед. магн. поля применяют магн. стрелки (опыт Эстерда). Магн. стрелка предст. собой магнит, одетый на остриё. При пропускании тока через проводник стрелка испытывает силовое воздействие (устанавливается перпенд. проводнику). 2й метод исслед. маг. поля - с помощью плоского контура с током. Форма контура не играет роли.
Необходимо, чтобы размер контура был настолько мал, чтобы не искажал исследуемое поле. Контуры, вносимые в магн. поле испытывают ориентирующее действие со стороны этого поля. Рамки принято характеризовать положит. нормалью. Положительной наз. нормаль, проведённую к центру проводника, удовлетворяющего правилу правого винта по напр. тока. На основании действия сил на рамку делают вывод: магнитное поле - силовое и его надо характеризовать опред. направлением. За напр. магн. поля принимают напр. полож. нормали в данном месте распол. контура с током.
Определение характеристик маг. поля связано с определением поведения контура с током в поле. В однор. поле внесён контур тока таким образом, чтобы вдоль линий поля была направлена плоскость.
Пара сил создаёт вращающий момент M. Опыт показывает, что вращ. момент зависит от некот. силовой хар-ки поля и от силы тока в рамке (M~B; |M|~|I|). Для всех рамок вводится хар-ка, связанная с размерами расок и силой тока, текущей в них. Pm - магнитный момент. Pm=I·S [А·м2]. Магн. момент явл. вектором. Pm=n·I·S, где n - орт полож. нормали, т.е. Pm || n. Опыт показ., что M=[Pm , B] - механический вращ. момент равен векторному произведению магнитного момента рамки на вектор индукции магн. поля. M=Pm·B·sin (=Pm^B). Из этой ф-лы видно, что M=max, если =90° (положение I на рис.) Mmax=Pm·B(1). M=0 при =0 (полож II). Полож. II соответствует устойчивому равновесию рамки.
Индукция магн. поля - основная силовая хар-ка этого поля. Согл. ф-лы (1) B=Mmax / Pm. Индукцией магн. поля в данной точке наз. физическая величина, численно равная макс. вращающему моменту, действующ. в данной точке на рамку с током, имеющую единичный магн. момент. [B]=Н/(А·м)=Тл (Тесла). Ин-ция магн. поля предст. собой хар-ку результирующего поля, созданного макро- и микротоками. Индукцию можно изобразить силовыми линиями (аналог напряжён. эл. стат. поля).
Напряжённость магн. поля
Использ. вектор B не всегда удобно, поскольку проявл. зависимость от свойств Среды. Вводится вспомогат. хар-ка, не завис. от свойств Среды - напряжённость магнитного поля H (аналог D в эл. статике). B=H, где -магн. проницаемость. Для вакуума =1. -магнитная постоянная. =4·107 Гн/м. [H]=А/м. Для вакуума H=B/. За ед. (А/м) напряж. магн. поля принимают напряж. такого поля, у которого индукция B=4·107Тл. H определяется только макротоками и не завис. от микротоков. Поскольку H - это вектор, для него принято строить линии напряжённости.
Вихревой характер маг. поля. В отличие от эл. стат. поля, маг. поле является вихревым: линии магн. поля всегда замкнуты, представляют собой окружности (вихри), охватывающие проводники с током.
Магн. поле не явл. потенциальным. Линии поля B строят согласно правилу правого винта. Векторы B и H направлены по касательной в каждой точке линий.
Принцип суперпозиции
магнитных полей
Если в пр-ве имеется неск. проводников с токами, то в каждой точке пр-ва магн. поле создаётся каждым из проводников в отдельности независ. от наличия остальных. Результир. поле в этой точке характеризуется векторами B и H. Bi и Hi - векторы, порождаемые i-ым проводникомс током.
B=Bi; H=Hi;
Закон Био-Савара-Лапласа
Осн. задача магнитостатики состоит в умении рассчит. хар-ки полей. Закон Б-С-Л с использованием принципа суперпозиции даёт простейший метод расчёта полей.
dB-индукция, созд. в точ. A.
dB=(·(I·dl·sin/r2) [1]
dH=(I·dl·sin/(4r2) [2]
Индукция магн. поля, созданная элементом проводника dl с током I в точке A на расстоянии r от dl пропорц. силе тока, dl, синусу угла между r и dl и обр. пропорцион. квадрату расстояния r.
___ ____ __
dB=(·(I·[dl,r] /r3)
Значение з-на Б-С-Л заключается в том, что зная dH и dB от dl можно вычислить H и B проводника конеч. размеров разл. форм.
Применение з-на Б-С-Л
Поле прямого отрезка конечной длины с током.
·Гн/м, H?, B?
dH=I·dl·sinr2
По правилу прав. винта найдём направл. dH
____ ____
H=dH. Поскольку все dH напр. одинаково, можно записать H=dH. Переменной интегрирования выби-раем угол .
rd/dl=sin dl=rdl/sin.
dH=I·r·d·sin/sin·4r2=
=I·d/4r
из треуг. DOA b/r=sin
r=b/sin.
dH=I·sind/4b
H=I·sind/4b=
=I/4b sind=bcos|
4b(coscos) (2)
4b(coscos) (2’)
Поле прямого бескон. тока.
Для беск. тока
В (2): coscos1-(-1)=2
H=I/2b; B=I/2b.
Поле кругового тока
H=dH; r=R; =90°
2R
H=I·dl/4R2=I·2R/4R2=
0
=I/2R; B=I/2R (4)
Картина линий поля для кругового тока:
Поле подобно эл. статич. полю диполя. В связи с этим круговой ток пердст. собой магн. диполь. Покажем, что круг. ток может служить магн. диполем. Для этого в ф-ле (4) домножим числитель и знаменатель на R2.
B=·I·4R2/2RR2
R2=S; I·S=Pm
B=·Pm /2R3
Закон Ампера
На опыте устан., что на проводник с током в магн. поле действ. сила. Для прямолин. проводников длиной l: F=IBl·sin. При =90° F=IBl. Для проводников сложной формы з-н Ампера запис. в дифференц. форме: dF=IBdl·sin;
___ ___ ___
dF=I[B,dl]-векторная форма.
____ ____
F=dF
Взаимод. паралл. токов
Рассм. 2 проводника, расположенных паралл. друг к другу.
Будем считать, что 1 создаёт магн. поле, а 2 находится в поле 1-го. Тогда индукция маг. поля B1 в точках нахождения 2: B1=I1/2d.
F2=I2B1l2sin=I1I2l2/2d.
Можно аналог. рассм. силу F1, действующ. на проводник 1 со стороны поля тока I2. F1=F2, если l1=l2=l. Парал. токи притягиваются, антипарал. - отталкиваются.
При рассм. парал. проводников вводят силу, действ. на единицу длины проводника:
fед.дл.=I1I2/2d. (1)
Эта ф-ла позвол. ввести единицу силы тока в СИ “1 Ампер”.
Опред. ед. силы тока-Ампер
Полагая, что I1=I2=I из (1) имеем: I2=fед.дл.·2d/= fед.дл.·d/·10-7. Берём d=1м, fед.дл.=2·10-7Н/м.
За единицу силы тока 1A приним. силу такого тока, который протекает по 2-м парал. проводникам, расп. на расст. 1 м в вакууме, вызывает силу взаимодействия между ними, равную 2·10-7Н на кажд. ед. длины.
Сила Лоренца.
Эл. ток предст. собой упорядоченн. движение эл. зарядов. На токи в магн. поле действует сила Ампера, т.е. со стор. магн. поля на кажд. носитель заряда действ. тоже сила. Эту силу наз. силой Лоренца.
____ ____
Fл=qVBsin; =B^V
___ _ ____
Fл=q[V,B] - в вект. форме.
На покоящеиеся заряды сила Лоренца не действ. На заряды, влетающие в поле паралл. линиям поля сила Лор. тоже не действ.
Если одноврем. действ. электр. и магн. поля, то справедлва ф-ла Лоренца:
-___ ___
F=qE+Fл
Похожие работы
... силы тока от напряжения носит название закон Ома. Согласно закону Ома, для участка цепи сила тока прямо пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению проводника R. Основная электрическая характеристика проводника – сопротивление. Сопротивление зависит от материала проводника и его геометрических размеров. , где S – площадь поперечного сечения (м2, мм2 ) l – ...
... измерений на рабочем месте. Чтобы эти службы эффективно выполняли стоящие перед ними задачи необходимо научное, техническое и правовое обеспечение их деятельности. Научной основой МО является метрология - наука об измерениях. Техническую основу МО составляют: система государственных эталонов единиц ФВ; система передачи размеров единиц ФВ от эталонов всем средствам измерений с помощью образцовых ...
... организму. Основной акцент делался на том, что общество, подобно живому организму, состоит из взаимосвязанных и взаимозависимых частей, и соответственно, задачей социолога являлось изучение взаимосвязей и взаимозависимостей в этом образовании. Такой подход был связан с первоначальным намерением представить социологию естественной наукой, занимающейся проблемами, сходными с проблемами биологии. С ...
... пользователя: VI—XI классы. Платформа: Windows. Носитель: компакт-диск. Варианты построения уроков с использованием электронного учебника 1. Электронный учебник используется при изучении нового материала и его закреплении (20 мин. работы за компьютером). Учащихся сначала опрашивают по традиционной методике или с помощью печатных текстов. При переходе к изучению нового материала ...
0 комментариев