Формирование экономико-математической модели.
Постановка задачи.
Пусть имеется пять предприятий-изготовителей и одиннадцать потребителей одинаковой продукции. Известны производственные мощности изготовителей и потребности потребителей. Суммарные мощности предприятий больше потребности потребителей.
Производственные мощности изготовителя составляют Ai. Потребность потребителя продукции равна Bj.
На выпуск единицы продукции изготовитель i расходует Ri затрат.
Известны затраты на доставку единицы продукции из пункта i в пункт j – Cij.
Издержки транспорта значительны и должны быть включены в целевую функцию.
Требуется составить такой план производства и поставок, чтобы суммарные расходы на производство и транспортировку были минимальны.
Математическая формулировка задачи.
Удовлетворение всех потребностей:
Xij = Bj
Неотрицательность грузовых потоков:
Xij >= 0
Соблюдение ограничений мощности:
Xij <= Ai
Целевая функция:
(Ri + Cij)*Xij -> min
От обычной транспортной задачи поставленная задача отличается тем, что показатель оптимальности складывается из двух составляющих. Однако, общие затраты на производство и транспортировку определяются простым суммированием.
Таким образом, поставленная задача является открытой транспортной задачей.
Исходные данные
Предприятие | А1 | А2 | А3 | А4 | А5 | |||||
Производственные мощности | 135 | 160 | 140 | 175 | 165 | |||||
Затраты на ед. продукции в рублях | 119 | 93 | 81 | 70 | 62 | |||||
Потребители | В1 | В2 | В3 | В4 | В5 | В6 | В7 | В8 | В9 | В10 |
Спрос потребителей | 30 | 45 | 60 | 50 | 45 | 65 | 79 | 87 | 44 | 30 |
Матрица транспортных затрат, руб.
(получена на основе данных по сети)
Потребители | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | |
Отправители | Номера вершин | 3 | 12 | 24 | 35 | 19 | 30 | 16 | 9 | 31 | 5 |
A1 | 2 | 41 | 34 | 45 | 64 | 41 | 46 | 31 | 38 | 41 | 18 |
A2 | 33 | 47 | 22 | 12 | 21 | 13 | 7 | 12 | 36 | 2 | 36 |
A3 | 26 | 35 | 14 | 7 | 33 | 1 | 5 | 16 | 24 | 10 | 24 |
A4 | 21 | 40 | 40 | 38 | 39 | 31 | 37 | 42 | 29 | 42 | 51 |
A5 | 13 | 21 | 16 | 19 | 47 | 13 | 19 | 18 | 10 | 24 | 19 |
Суммированием затрат на производство и транспортных затрат в каждой клетке матрицы получаем расчетную матрицу.
Расчетная матрица стоимостных затрат.
Потребители | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | |
Отправи тели | Ресурсы | ||||||||||
A1 | 135 | 160 | 153 | 164 | 183 | 160 | 165 | 150 | 157 | 160 | 137 |
A2 | 160 | 140 | 115 | 105 | 114 | 106 | 100 | 105 | 129 | 95 | 129 |
A3 | 140 | 116 | 95 | 88 | 114 | 82 | 86 | 97 | 105 | 91 | 105 |
A4 | 175 | 110 | 110 | 108 | 109 | 101 | 106 | 112 | 99 | 112 | 121 |
A5 | 165 | 83 | 78 | 81 | 109 | 75 | 81 | 80 | 72 | 86 | 81 |
Так как транспортная задача открытая, то мощности превышают потребности. Часть поставщиков в оптимальном плане остается недозагруженной. Для решения задачи в матричной форме вводится фиктивный потребитель – дополнительный столбец с потребностью, равной избытку ресурсов над реальными потребностями.
Решение транспортной задачи.
Исходные данные.
Потребители | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | В10 | В11 | |
Отправи тели | Ресурсы | 30 | 45 | 60 | 50 | 45 | 65 | 79 | 87 | 44 | 30 | 240 |
A1 | 135 | 160 | 153 | 164 | 183 | 160 | 165 | 150 | 157 | 160 | 137 | 0 |
A2 | 160 | 140 | 115 | 105 | 114 | 106 | 100 | 105 | 129 | 95 | 129 | 0 |
A3 | 140 | 116 | 95 | 88 | 114 | 82 | 86 | 97 | 105 | 91 | 105 | 0 |
A4 | 175 | 110 | 110 | 108 | 109 | 101 | 106 | 112 | 99 | 112 | 121 | 0 |
A5 | 165 | 83 | 78 | 81 | 109 | 75 | 81 | 80 | 72 | 86 | 81 | 0 |
Итого 775
Решение
Потребители | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | ||
Отправи тели | Ресурсы | 30 | 45 | 60 | 50 | 45 | 65 | 79 | 87 | 44 | 30 | 240 | |
A1 | 135 | 160 | 153 | 164 | 183 | 160 | 165 | 150 | 157 | 160 | 137 | 0 | |
|
|
|
|
|
|
|
|
|
|
|
| 135 | |
A2 | 160 | 140 | 115 | 105 | 114 | 106 | 100 | 105 | 129 | 95 | 129 | 0 | |
|
|
|
|
|
|
|
| 49 |
| 44 |
| 67 | |
A3 | 140 | 116 | 95 | 88 | 114 | 82 | 86 | 97 | 105 | 91 | 105 | 0 | |
|
|
|
|
|
| 45 | 65 | 30 |
|
|
|
| |
A4 | 175 | 110 | 110 | 108 | 109 | 101 | 106 | 112 | 99 | 112 | 121 | 0 | |
|
|
|
|
| 20 |
|
|
| 87 |
| 30 | 38 | |
A5 | 165 | 83 | 78 | 81 | 109 | 75 | 81 | 80 | 72 | 86 | 81 | 0 | |
|
| 30 | 45 | 60 | 30 |
|
|
|
|
|
|
| |
Итого 775
Для подтверждения правильности решения оптимальный план, полученный в данной таблице проверяется методом потенциалов на соблюдение условий оптимальности .
Условие оптимальности выглядит следующим образом:
Vij – Uij <= Cij
Vij – Uij = Cij , если Xij > 0
Для всех клеток матрицы разность потенциалов столбца и строки меньше или равна показателю оптимальности, для занятых клеток точно равна его значению.
Первый потенциал может быть присвоен любой строке или столбцу. В данном случае первый потенциал присвоен базисной клетке, где затраты на транспортировку максимальны (А4 – В10).
Проверка решения методом потенциалов.
Потребители | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 |
| ||
Отправител | Ресурсы | 30 | 45 | 60 | 50 | 45 | 65 | 79 | 87 | 44 | 30 | 240 |
| |
A1 | 135 | 160 | 153 | 164 | 183 | 160 | 165 | 150 | 157 | 160 | 137 | 0 | 150 | |
|
|
|
|
|
|
|
|
|
|
|
| 135 |
| |
A2 | 160 | 140 | 115 | 105 | 114 | 106 | 100 | 105 | 129 | 95 | 129 | 0 | 150 | |
|
|
|
|
|
|
|
| 49 |
| 44 |
| 67 |
| |
A3 | 140 | 116 | 95 | 88 | 114 | 82 | 86 | 97 | 105 | 91 | 105 | 0 | 158 | |
|
|
|
|
|
| 45 | 65 | 30 |
|
|
|
|
| |
A4 | 175 | 110 | 110 | 108 | 109 | 101 | 106 | 112 | 99 | 112 | 121 | 0 | 150 | |
|
|
|
|
| 20 |
|
|
| 87 |
| 30 | 38 |
| |
A5 | 165 | 83 | 78 | 81 | 109 | 75 | 81 | 80 | 72 | 86 | 81 | 0 | 150 | |
|
| 30 | 45 | 60 | 30 |
|
|
|
|
|
|
|
| |
|
| 233 | 228 | 231 | 259 | 240 | 244 | 255 | 249 | 245 | 271 | 150 |
| |
Потребители | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | ||
Отправител | Ресурсы | 30 | 45 | 60 | 50 | 45 | 65 | 79 | 87 | 44 | 30 | 240 | |
A1 | 135 | 50 | 48 | 62 | 74 | 64 | 65 | 45 | 51 | 50 | 35 | 0 | |
|
|
|
|
|
|
|
|
|
|
|
| 135 | |
A2 | 160 | 30 | 10 | 3 | 5 | 10 | 0 | 0 | 30 | 0 | 27 | 0 | |
|
|
|
|
|
|
| 30 | 79 |
| 44 |
| 7 | |
A3 | 140 | 20 | 4 | 0 | 19 | 0 | 0 | 6 | 20 | 10 | 17 | 20 | |
|
|
|
| 60 |
| 45 | 35 |
|
|
|
|
| |
A4 | 175 | 0 | 5 | 6 | 0 | 5 | 6 | 7 | 0 | 17 | 19 | 0 | |
|
|
|
|
| 50 |
|
|
| 27 |
|
| 98 | |
A5 | 165 | 0 | 0 | 0 | 27 | 0 | 2 | 2 | 0 | 18 | 0 | 27 | |
|
| 30 | 45 |
|
|
|
|
| 60 |
| 30 |
| |
Далее следует сравнить Целевую функцию в решении задачи (F1) и целевую функцию, полученную при решении потенциалов (F2), если F1 > F2, то план оптимален.
Потребители | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | ||
Отправите | Ресурсы | 30 | 45 | 60 | 50 | 45 | 65 | 79 | 87 | 44 | 30 | 240 | |
A1 | 135 | 160 | 153 | 164 | 183 | 160 | 165 | 150 | 157 | 160 | 137 | 0 | |
|
|
|
|
|
|
|
|
|
|
|
| 135 | |
A2 | 160 | 140 | 115 | 105 | 114 | 106 | 100 | 105 | 129 | 95 | 129 | 0 | |
|
|
|
|
|
|
|
| 49 |
| 44 |
| 67 | |
A3 | 140 | 116 | 95 | 88 | 114 | 82 | 86 | 97 | 105 | 91 | 105 | 0 | |
|
|
|
|
|
| 45 | 65 | 30 |
|
|
|
| |
A4 | 175 | 110 | 110 | 108 | 109 | 101 | 106 | 112 | 99 | 112 | 121 | 0 | |
|
|
|
|
| 20 |
|
|
| 87 |
| 30 | 38 | |
A5 | 165 | 83 | 78 | 81 | 109 | 75 | 81 | 80 | 72 | 86 | 81 | 0 | |
|
| 30 | 45 | 60 | 30 |
|
|
|
|
|
|
| |
Цел. Ф-ия (F1) | 2490 | 3510 | 4860 | 5450 | 3690 | 5590 | 8055 | 8613 | 4180 | 3630 | 0 | ||
Цел. Ф-ия (F1) | 50068 | ||||||||||||
Потребители | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | ||
Отправител | Ресурсы | 30 | 45 | 60 | 50 | 45 | 65 | 79 | 87 | 44 | 30 | 240 | |
A1 | 135 | 160 | 153 | 164 | 183 | 160 | 165 | 150 | 157 | 160 | 137 | 0 | |
|
|
|
|
|
|
|
|
|
|
|
| 135 | |
A2 | 160 | 140 | 115 | 105 | 114 | 106 | 100 | 105 | 129 | 95 | 129 | 0 | |
|
|
|
|
|
|
| 30 | 79 |
| 44 |
| 7 | |
A3 | 140 | 116 | 95 | 88 | 114 | 82 | 86 | 97 | 105 | 91 | 105 | 0 | |
|
|
|
| 60 |
| 45 | 35 |
|
|
|
|
| |
A4 | 175 | 110 | 110 | 108 | 109 | 101 | 106 | 112 | 99 | 112 | 121 | 0 | |
|
|
|
|
| 50 |
|
|
| 27 |
|
| 98 | |
A5 | 165 | 83 | 78 | 81 | 109 | 75 | 81 | 80 | 72 | 86 | 81 | 0 | |
|
| 30 | 45 |
|
|
|
|
| 60 |
| 30 |
| |
Цел. Ф-ия (F2) | 2490 | 3510 | 5280 | 5450 | 3690 | 6010 | 8295 | 6993 | 4180 | 2430 | 0 | ||
Цел. Ф-ия (F2) | 48328 |
| |||||||||||
Т.к. 50068 > 48328 , то план оптимален, т.е. условие оптимальности соблюдается во всех клетках матрицы, следовательно задача решена правильно.
Вывод.
Разработанный оптимальный план обеспечивает минимальные затраты на производство и транспортировку продукции из пяти пунктов производства в десять пунктов потребления.
На основе решения транспортной задачи определены поставки каждого пункта производства в пункты потребления, производственные программы по заводам изготовителям и резервы производственных мощностей.
Резерв производственной мощности на заводе А1 составляет 135 единиц (поставки фиктивному потребителю), на заводе А2 – 7 единиц, на заводе А4 – 98 единиц, остальные предприятия резервов не имеют.
Минимальные затраты на транспортировку и производство составили 48328 рублей. Затраты на производство продукции в составе суммарных затрат определяются умножением затрат на производство единицы продукции на производственную программу и составят:
119*0+93*153+81*140+70*77+62*165= 14229+11340+5390+10230=41189 рублей или 85,2%.
Затраты на транспортировку составляют 7139 рублей или 14,8%. Такую долю транспортных затрат для готовой продукции следует считать довольно высокой, хотя по отдельным видам дешевых массовых грузов эта доля может быть значительно выше.
Похожие работы
... на них, оценки технико-экономических показателей и, в завершении, построения экономико-математической модели предприятия. В экономико-математической модели в целевую функцию должен вводиться тот или иной фактор неопределенности. В дальнейшем будет приведена разработка методика учета факторов неопределенности, показаны математические модели снятия неопределенности. Крайне важным является оценка ...
... ситуации является определяющим фактором [7]. В зависимости от того, какой метод анализа модели выбран, факторныe разложения могут различаться. Глава 2. Применение детерминированных экономико-математических моделей и методов факторного анализа на примере РУП «ГЗЛиН». 2.1 Характеристика РУП «ГЗЛиН» 9 октября 1979 - издан приказ М 272 Министерства машиностроения для животноводства и ...
... производства, чем (6.3.4), представляется равенство где - отнесенный к моменту t временной лаг, (). Обозначим и составим матрицы с помощью которых систему (6.3.1)-(6.3.5) перепишем в виде В математической экономике магистралью называется траектория экономического роста, на которой пропорции производственных показателей (такие как темп роста производства, темп снижения цен) неизменны ...
... ; - развитие теорий мотивации; - история возникновения системного анализа. Отметим, что "Оригинальная методика анализа альтернативных подходов к формированию структуры организации" стала венцом взаимодействия направлений "Теории управления" использующих как чисто количественные методы, так и учитывающих человеческий фактор. Глава 2. Три источника (три составных части) "Оригинальной ...
0 комментариев