Витамины

33872
знака
0
таблиц
0
изображений

Витамины, органические вещества, необходимые в небольших количествах в пищевом рационе как человека, так и большинства позвоночных. Синтез витаминов, как правило, осуществляется растениями, а не животными. Ежедневная потребность человека в витаминах составляет лишь несколько миллиграммов или микрограммов. В отличие от неорганических веществ витамины разрушаются при сильном нагревании. Многие витамины нестабильны и «теряются» во время приготовления пищи или при обработке пищевых продуктов.

В начале 20 в. считалось, что ценность пищи определяется главным образом ее калорийностью. Этот взгляд пришлось пересмотреть, когда были описаны первые эксперименты, показывающие, что, если из рациона животных исключить ряд продуктов, у них развиваются болезни, обусловленные пищевой недостаточностью; при этом потребление даже небольших количеств определенных пищевых продуктов или их экстрактов позволяло предотвращать или излечивать подобные заболевания. Оказалось, что благотворное действие таких добавок зависит от присутствия ранее неизвестных веществ, которые встречаются в печени, молоке, зелени и других продуктах, обладающих «защитным» эффектом. Последующие эксперименты привели к открытию как самих этих веществ – витаминов, так и их роли в жизнедеятельности организма.

Название «витамины», предложенное в 1911 американским биохимиком польского происхождения К.Функом, вскоре стало общеупотребительным. В ходе экспериментальных исследований витамины были выделены в чистом виде из пищевых продуктов и была определена их химическая структура, что позволило синтезировать и получать их в промышленных масштабах. Искусственно полученные витамины ничем не отличаются от тех, что содержатся в пище. Они используются в качестве лекарств для профилактики болезней пищевой недостаточности и в качестве добавок для повышения питательной ценности пищевых продуктов и кормов сельскохозяйственных животных. Иногда люди принимают слишком много витаминов, полагая, что таким образом улучшают свое здоровье. Для подобного мнения нет никаких оснований, а избыточный прием витаминов A и D может иметь вредные последствия.

Витамины подразделяют на два класса: жирорастворимые и водорастворимые. Жирорастворимые витамины растворяются в бензине, эфире и жирах. В отличие от них водорастворимые витамины не растворяются в жирах, но растворимы в воде и спирте. Витамины A, D, E и K – жирорастворимые; все остальные – водорастворимые.

Все витамины, кроме витамина D, могут быть получены при хорошо сбалансированном питании из обычных пищевых продуктов. В некоторых случаях, например при беременности, потребность в витаминах возрастает, и тогда рекомендуется принимать витамины дополнительно, используя препараты, например, в виде капсул.

Некоторые витамины организм получает не только с пищей, но и за счет «внутрикишечного синтеза», осуществляемого бактериями, которыми всегда изобилует кишечник. Так образуется ряд витаминов группы B и витамин K, однако в количественном отношении их синтез и доступность для использования могут варьировать. У жвачных животных, например, доля витаминов группы B, получаемых за счет бактериального синтеза, весьма заметна. С другой стороны, выяснилось, что кишечные бактерии могут, по-видимому, конкурировать с организмом хозяина за питательные вещества. Так, животные, которых выращивали в стерильных условиях или кормили пищей с добавками антибиотиков, росли быстрее, чем обычно. У человека внутрикишечно синтезируется значительное количество одного из витаминов группы В, а именно биотина, который затем поступает в кровь.

Болезни, обусловленные витаминной недостаточностью

Зеленые растения – это живые организмы, способные под действием света производить из простых химических соединений все необходимые им вещества: белки, жиры, углеводы, пигменты и множество других сложных органических соединений. В отличие от растений животные неспособны производить для себя пищевые вещества. Более того, они не могут сами синтезировать и некоторые сложные молекулы – витамины, которые необходимы для поддержания нормального обмена веществ. В тех случаях, когда животные не получают с пищей витамины, у них развиваются болезни, обусловленные витаминной недостаточностью («авитаминозом»). Большинство диких животных питается достаточно разнообразно, и такие болезни у них не возникают. Человек же часто не склонен к сбалансированному питанию и, имея возможность выбора, предпочитает рафинированную и легкую пищу, часто обедненную витаминами. Для наименее обеспеченных групп населения обычно характерен однообразный (и скудный) пищевой рацион. В результате возникают болезни витаминной недостаточности. Их причины были установлены лишь в 20 в., после чего профилактика этих заболеваний перестала вызывать трудности.

Ксерофтальмия. По свидетельствам современников, на протяжении 19 и в начале 20 в. ксерофтальмия («сухой глаз») часто наблюдалась у страдающих от недоедания и особенно у голодающих детей. При этом заболевании прекращаются выработка и выделение секрета слезных желез, что вызывает сухость глаз и помутнение роговицы. Заболевание способствует инфекциям, которые могут привести к хроническим нарушениям зрения и даже к слепоте. В 1904 японский врач М.Мори предложил лечить это заболевание рыбьим жиром и печенью цыпленка. Однако его рекомендации не были по достоинству оценены. Во время Первой мировой войны ксерофтальмия широко распространилась среди детей Дании, что было вызвано недостаточностью витамина А. Дело в том, что датчане экспортировали сливочное масло, так что дети в этой стране питались только маргарином и обезжиренным молоком, которые не содержали витамина А. После того как К.Блок показал, что болезнь поддается лечению рыбьим жиром и сливочным маслом, датское правительство сразу же ограничило экспорт масла. Эта мера незамедлительно привела к спаду заболеваемости ксерофтальмией. Вся эта цепь событий вызвала огромный интерес у диетологов. Масло повсеместно стали признавать продуктом «защитного» действия. Многие лаборатории занялись выделением вещества, названного «жирорастворимым веществом A», которое и определяло благотворное действие масла и рыбьего жира.

В конце концов, было обнаружено, что один из лучших источников витамина A – жир, выделенный из печени акулы галеус. Один грамм этого жира содержит столько же витамина A, сколько 6 кг масла. Однако собственно витамин A составляет лишь 5% общего веса жира. Вскоре витамин был выделен высоковакуумной перегонкой, а затем химически синтезирован. Тем временем выяснилось, что растительный пигмент бета-каротин тоже предупреждает развитие недостаточности витамина A. Парадокс заключался в том, что каротин – пигмент темно-красного цвета, а высокоэффективные концентраты витамина A из рыбьего жира имеют бледно-желтую окраску. Ученые обнаружили, что в стенке тонкого кишечника животных каротин превращается в витамин A, при этом молекула каротина расщепляется на две одинаковые половины и утрачивает окраску. Каждая из двух половин соответствует молекуле витамина A. Сегодня в маргарин, исходно не содержащий витамин A, его специально добавляют.

Рахит. До 1920 рахитом страдали главным образом дети северных стран. При этом заболевании нарушается процесс минерализации (кальцификации) костной ткани; внешними признаками рахита служат саблевидные голени, вывернутые внутрь колени, деформированные ребра и череп, нездоровые зубы. Особая подверженность рахиту детей заставила обратить внимание на ту роль, которую кальций и фосфор играют в детском возрасте, когда происходит рост костей, состоящих в значительной мере из фосфата кальция. В начале 20 в. было показано, что рахит можно лечить солнечным светом, причем эффективной оказалась лишь ультрафиолетовая часть спектра. Механизм такого воздействия предстояло раскрыть, поскольку очевидно, что сам по себе солнечный свет не может поставлять организму кальций и фосфор. Со временем выяснилось, что лечебное действие оказывают также печень трески (поначалу народное средство) и рыбий жир. Значительному прогрессу в изучении рахита способствовали лабораторные эксперименты с крысами. В 1924 было установлено, что некоторые продукты приобретают способность излечивать рахит при обработке их ультрафиолетовым светом. Эти факты помогли чуть позже обнаружить, что под действием ультрафиолетового света в коже образуется биологически активное вещество, витамин D3, который является основным регулятором обмена кальция и фосфора в костях.

Бери-бери. Эта болезнь была так широко распространена в восточных странах до начала 20 в., что считалась одной из главных в мире. У заболевших происходит поражение нервной системы, что приводит к слабости, потере аппетита, повышенной возбудимости и параличу с весьма высокой вероятностью смертельного исхода. Бери-бери часто страдали японские моряки. Только в 1884 японский диетолог Т.Такаки заметил, что заболевания можно избежать, если пищевой рацион моряков сделать более разнообразным и включить в него овощи. В 1890-х годах голландский врач Х.Эйкман обнаружил, что болезнь возникает при употреблении в качестве основной пищи полированного риса и что сходное заболевание, полиневрит, можно вызвать у кур, если кормить их только полированным рисом. Полированный рис получают путем удаления наружных оболочек рисовых зерен. Оказалось, что идущие в отбросы оболочки обладают лечебным действием. После длительных усилий ученым удалось выделить в небольших количествах из дрожжей и рисовых оболочек кристаллическое вещество, которое содержало серу. Это вещество, витамин В1, или тиамин, предупреждало и излечивало бери-бери, а отсутствие его в полированном рисе служило причиной заболевания. Тиамин был исследован химическими методами, и в 1937 его синтезировали. В настоящее время синтетический тиамин добавляют к полированному рису и белой муке.

Пеллагра. Из всех болезней, связанных с витаминной недостаточностью, пеллагра в свое время особенно часто наблюдалась в США. Хотя это заболевание было впервые описано в начале 18 в. в Италии, где и получило свое название, с начала 20 в. оно широко распространилось в США. Чаще всего пеллагрой страдали бедняки из сельских районов, которые питались очень однообразно, в основном кукурузой и жирным мясом. При пеллагре наблюдаются понос, рвота, головокружение, дерматит и другие повреждения кожи, отек языка с развитием изъязвлений преимущественно под ним, а также на деснах и слизистой нижней губы, потеря аппетита, головная боль, депрессия и слабоумие. Страдавших этим заболеванием часто направляли в больницы для умалишенных. В 1937 было установлено, что от пеллагры излечивают никотиновая кислота (ниацин) или ее амид (никотинамид). Хотя никотиновую кислоту выделили из дрожжевого экстракта еще в 1912, до 1937 никто не подозревал, что именно это вещество может быть использовано для профилактики и лечения пеллагры. Изменение рациона питания привело к почти полному исчезновению пеллагры в США.

Мегалобластная анемия. У животных эритроциты и лейкоциты вырабатываются в костном мозге. Поскольку время жизни этих клеток невелико, костный мозг должен постоянно их вырабатывать. Процесс образования новых кровяных клеток носит название гемопоэза. Для того чтобы он шел нормально, необходимо присутствие двух витаминов, и если хотя бы одного из них нет, костный мозг подвергается изменениям (видимым под микроскопом) и вместо эритроцитов начинает производить аномальные клетки – мегалобласты. В результате развивается мегалобластная анемия . Одну из форм этого заболевания называют пернициозной, т.е. злокачественной, анемией, поскольку в отсутствие лечения она всегда имеет смертельный исход. До 1920 не знали ни одного средства лечения пернициозной анемии. Впоследствии, однако, было обнаружено, что в случаях потребления большого количества печени болезнь принимает более легкую форму. Столь же эффективны оказались концентрированные экстракты печени, в особенности при внутримышечном введении: создавалось впечатление, что усвоению этих экстрактов, принятых через рот, что-то мешает. В конце концов причина была найдена: в желудке больных пернициозной анемией не вырабатывался т.н. внутренний фактор, входящий в состав желудочного сока и необходимый для всасывания витамина В12. В настоящее время для лечения этого заболевания назначают инъекции витамина В12, т.е. того витамина, который присутствует в концентрированных экстрактах печени.

В начале 1930-х годов установили, что в тропических странах беременные женщины часто страдают мегалобластной анемией, которая не поддается лечению инъекциями концентрированных экстрактов печени. Однако заболевание излечивалось при потреблении сырой печени или экстрактов дрожжей. Анемию удалось искусственно вызвать у обезьян и кур; вещество, пригодное для ее профилактики и лечения, вскоре выделили как из печени, так и из дрожжей, и химически синтезировали. Оказалось, что это вещество – фолиевая кислота – играет значительную роль во многих биохимических процессах, особенно в синтезе нуклеиновых кислот.

Цинга. Многие века моряки и путешественники страдали от цинги – очень тяжелого заболевания, при котором человек сильно худеет, испытывает постоянную усталость и боли в суставах. Болезнь часто заканчивалась смертельным исходом. В 1536 во время зимней экспедиции Жака Картье по Южной Канаде 26 его спутников умерли от цинги. Остальные путешественники вылечились с помощью водного экстракта сосновой хвои – средства, которое использовали индейцы. Двести лет спустя хирург британского флота Дж.Линд показал, что болезнь моряков можно лечить свежими овощами и фруктами, и с 1795 на всех британских кораблях стали добавлять к рациону сок цитрусовых.

Прошло еще столетие, прежде чем цингу стали изучать в лабораториях. В 1907 обнаружили, что ее можно искусственно вызвать у морских свинок (у других лабораторных животных заболевание не развивалось), если кормить их только овсяными зернами и отрубями. Излечивать морских свинок от цинги удавалось лимонным соком, однако выделенное из лимонного сока активное вещество в чистом виде быстро разлагалось на воздухе. Только в 1931 был получен в кристаллической форме витамин С, который излечивал морских свинок от цинги. Его удалось выделить из лимонного сока, коры надпочечников и сладкого перца. По своей структуре это вещество, названное аскорбиновой кислотой, оказалось родственным гексозам. Вскоре его синтезировали химическим путем, после чего было быстро налажено дешевое производство нового витамина.

Витамин A

Витамин A представляет собой жирорастворимый спирт бледно-желтого цвета, который образуется из красного растительного пигмента бета-каротина (провитамина A). В организме животных и человека происходит превращение бета-каротина в витамин A. Поэтому каротин можно рассматривать как растительную форму витамина A. И витамин A, и бета-каротин – ненасыщенные соединения, они легко окисляются на воздухе и разрушаются. Раньше основным источником концентрированного витамина A служил рыбий жир, в основном из печени акулы. В настоящее время этот витамин синтезируют химическим путем.

Активность витамина A определяют биологически, по его способности стимулировать рост крыс, испытывающих дефицит этого витамина. Одна единица витамина A ежедневно – доза, достаточная для выживания таких крыс и их медленного роста. В одном грамме витамина A содержится около трех миллионов единиц.

Физиологическая роль витамина A состоит в поддержании нормального состояния прежде всего эпителиальных тканей (в том числе слизистых оболочек), а также нервной и костной тканей. От витамина A зависит способность видеть при слабом освещении. Дело в том, что важным компонентом сетчатки является производное витамина А, родопсин, или зрительный пурпур, который принимает участие в зрительном процессе. Недостаточность витамина A ведет к утрате родопсина, что, в свою очередь, вызывает ночную («куриную») слепоту, т.е. неспособность видеть в сумерках. Благодаря своей роли в деятельности сетчатки витамин А получил название «ретинол» (от retina, сетчатка). Ежедневная потребность взрослого человека в витамине A – ок. 5000 единиц. При продолжительном приеме более высоких доз он оказывает токсическое действие. Важными источниками бета-каротина служат зелень, морковь и другие зеленые и желтые овощи. Витамин A содержится в рыбьем жире, яичном желтке и масле. В печени пресноводных рыб встречается другая форма витамина A – витамин A2.

Витамин D

Витамин D структурно связан со стероидными соединениями – классом жирорастворимых веществ, входящих в состав животных тканей, грибов и различных растений. Витамин D – это семейство соединений, каждое из которых образуется из определенного стерина, своего предшественника. Стерины (их называют также стеролами) представляют собой органические вещества, в структуру которых входит несколько сочлененных колец, образованных атомами углерода; под действием ультрафиолетового света одно из колец раскрывается, и стерин превращается в витамин D. Эта уникальная реакция протекает в коже позвоночных, но несвойственна растениям. Поэтому витамин D не может быть получен с растительной пищей, а образуется под действием прямого солнечного света в животном организме и может запасаться в нем (главным образом в печени, а также в жировой ткани). Одна из его форм – витамин D2, или эргокальциферол, – образуется при облучении ультрафиолетовым светом эргостерина, природного стерина, получаемого в больших количествах из дрожжей. У животных витамин D представлен в основном в форме витамина D3, или холекальциферола. Он более активен, чем витамин D2, и образуется при облучении 7-дегидрохолестерина. Активность обеих форм витамина определяют по их способности вызывать отложение минеральных веществ (в основном фосфата кальция) в костях молодых крыс. Витамин D имеется в жирах, выделенных из печени костных рыб.

Витамин D3 увеличивает всасывание кальция в тонком кишечнике. Точнее говоря, эту функцию выполняют его производные, образующиеся в организме. (Эти метаболиты сейчас рассматриваются как стероидные гормоны, а сам витамин D – как гормон, образующийся в коже.) Наиболее активным из производных является 1,25-дигидроксихолекальциферол [сокращенно: 1,25-(OH)2D3]; он вырабатывается в почках из 25-гидроксихолекальциферола [25-(OH)D3], образующегося в печени непосредственно из витамина D3. По-видимому, это высокоактивное производное витамина D3 индуцирует синтез кальций-связывающего белка в стенке тонкого кишечника. Витамин D2 также превращается в организме в вещество со сходным механизмом действия, 1,25-дигидроксиэргокальциферол [1,25-(OH)2D3].

Поскольку витамин D регулирует процесс усвоения кальция и фосфора, он играет ключевую роль в нормальном формировании костей и зубов. Нужнее всего он беременным женщинам и детям. Если растущему организму, у которого только формируются кости, не хватает витамина D, содержание кальция и фосфора в крови падает ниже нормального уровня, и кости размягчаются и деформируются. В этом случае дети страдают рахитом, а у беременных женщин развивается аналогичное заболевание, называемое остеомаляцией. Открытие витамина D позволило почти полностью победить рахит во многих северных странах, где световой день зимой очень короток и витамина D в коже образуется мало; в настоящее время детям повсеместно назначают витамин D. Обычные оконные стекла не пропускают ультрафиолетовый свет, необходимый для образования витамина D.

Один грамм витамина D соответствует 40 млн. единиц активности. Ежедневная потребность как детского организма, так и беременных и кормящих женщин – 400 единиц. Известны случаи, когда для лечения некоторых форм артрита назначали гораздо большие дозы. Однако в высоких дозах витамин D может оказывать токсическое действие.

Витамин E

Витамин E имеет и другое название – токоферол, что по-гречески означает «рождение младенца» и указывает на роль этого витамина в репродукции. Известно четыре формы токоферола – альфа, бета, гамма и дельта. Все эти близкородственные соединения сходны по химической структуре с хлорофиллом – зеленым пигментом растений. По-видимому, наиболее активен альфа-токоферол. Витамин E запасается главным образом в жировой ткани.

В концентрированном виде токоферолы получают путем высоковакуумной перегонки природных растительных масел. Основными природными источниками витамина E служат зеленые листья растений, а также хлопковое, арахисовое, соевое и пшеничное масла. Хорошим источником этого витамина является также маргарин, приготовленный из растительного масла. Промышленностью выпускается и синтетический альфа-токоферол.

Биологическое определение витамина E проводят на беременных крысах. Получая корм с недостатком токоферола, крысы не могут вВитаминыносить плод до конца срока, и тот либо рождается мертвым, либо рассасывается в матке. Другая функция витамина E состоит в поддержании мышечного тонуса у молодых животных. Витамин E является антиоксидантом и, в частности, предотвращает окисление и разрушение витамина A. У человека, в особенности у детей, недостаточность витамина E приводит к быстрому разрушению эритроцитов и анемии. Связь между витамином E и репродукцией человека не доказана.

Рекомендованная ежедневная доза витамина E в пересчете на альфа-токоферол составляет 10 мг.

Витамин K

Витамин K существует в природе в двух формах: K1 и K2. Обе формы жирорастворимы. К настоящему времени химически получено много других форм витамина K, в том числе и водорастворимых. Самая простая форма витамина K – синтетический продукт менадион (2-метил-1,4-нафтохинон), который представляет собой желтоватое масло с резким вкусом. Витамин K называют также антигеморрагическим витамином: считается, что он индуцирует образование в печени протромбина – белка, участвующего в свертывании крови. При недостаточности витамина K время свертывания крови значительно увеличивается по сравнению с нормой, и человек страдает частыми кровотечениями и кровоизлияниями. Витамин K1 содержится в зеленых листьях растений, а витамин K2 производят бактерии, населяющие в норме кишечник человека, например кишечная палочка (Escherichia coli). По-видимому, важную роль в растворении природного витамина K в кишечнике играет желчь: в ее отсутствие витамин не всасывается. В связи с этим недостаточность витамина K может возникнуть в результате нарушения оттока желчи (при обтурационной, или механической, желтухе).

Здоровый организм, как правило, удовлетворяет свои потребности в витамине K при сбалансированном питании. Однако беременным женщинам незадолго до родов и новорожденным рекомендуется дополнительное введение этого витамина для того, чтобы повысить содержание протромбина в крови новорожденных и тем самым предупредить развитие у них кровоизлияний (в случае родовых травм) и кровотечений. Уже через несколько дней после рождения организм младенца начинает получать свой собственный витамин K из пищеварительного тракта. Вероятно, ежедневная потребность в витамине K не превышает доли миллиграмма.

Витамины группы B

На заре изучения витаминов было обнаружено, что в ряде природных продуктов (дрожжах, печени и молоке) содержится водорастворимая фракция, необходимая для нормальной жизнедеятельности. Ее назвали водорастворимой фракцией B. Вскоре было показано, что она содержит целый ряд химических соединений, в том числе тиамин, рибофлавин и ниацин.

Бесконечное разнообразие биохимических реакций, протекающих в организме, осуществляется под действием особых белков – ферментов . Для любой химической реакции, протекающей в организме, нужен свой фермент. Многие ферменты (особенно те, что используются в процессах окисления питательных веществ и накопления полезной энергии) проявляют активность только присутствии витаминов группы B (или их производных), которые служат т.н. коферментами. Если организм не получает какого-то из этих витаминов с пищей, фермент не может работать, и соответствующие химические реакции не идут.

Тиамин

Тиамин (витамин B1) – соединение сложной химической структуры, содержащее серу, которая и придает ему характерный неприятный запах. Тиамин разрушается при нагревании в присутствии влаги; в сухом виде он стабилен. В процессе приготовления пищи или консервирования продуктов содержание тиамина в них уменьшается, но связано это главным образом не с нагреванием, а с тем, что он легко вымывается. В природе тиамин широко распространен, но в большинстве пищевых продуктов его содержание невелико. Современные вкусы и способы приготовления пищи привели к тому, что люди стали получать меньше тиамина. Поэтому в муку теперь вносят витаминные добавки. Много тиамина содержится в дрожжах, арахисе, горохе и других бобовых культурах, постной свинине, отрубях и проростках злаковых растений. Содержание тиамина определяют с помощью тиохромного теста, основанного на измерении интенсивности флуоресценции тиохрома – производного тиамина.

Тиамин играет важную роль в ферментной системе, обеспечивающей использование углеводов клетками. При недостатке тиамина углеводы в тканях организма «сгорают» не полностью; при этом накапливаются токсичные продукты, что и может служить причиной бери-бери – болезни тиаминной недостаточности. Дефицит тиамина иногда возникает при алкоголизме – как результат неправильного питания. Взрослым рекомендуется ежедневно потреблять от 1 до 1,5 мг тиамина. В лечебных целях тиамин назначают в значительно больших дозах без заметных побочных эффектов.

Рибофлавин

Рибофлавин (витамин B2) – оранжевый пигмент, придающий желтоватую окраску сырому яичному белку и молочной сыворотке. Он значительно более устойчив к нагреванию, чем тиамин, но разрушается под действием света. При выдерживании молока на свету в течение двух часов бВитаминыльшая часть рибофлавина разрушается. Он должен регулярно поступать с пищей, причем довольно много рибофлавина содержится в печени, дрожжах, яйцах, зеленых листьях растений и молоке. В промышленных масштабах этот витамин получают методом микробиологического синтеза или химическим путем. Способ его определения по флуоресценции напоминает тиохромный тест для тиамина. Как и тиамин, рибофлавин играет важную роль в некоторых ферментных системах, обеспечивающих использование клетками питательных веществ. При недостаточности рибофлавина кожа вокруг ноздрей и рта покрывается трещинами и изъязвляется. Кроме того, страдают глаза: возникает непереносимость яркого света (фотофобия). Рибофлавин должен присутствовать и в корме животных; в случае недостаточности этого витамина цыплята не вылупляются, а у кур развивается паралич стопы. Согласно рекомендациям, человек должен получать примерно 1,2–1,7 мг рибофлавина в день.

Ниацин

Ниацин (никотиновая кислота, витамин PP) и ниацинамид (никотинамид) – два взаимозаменяемых витаминных вещества. В лечебной практике ниацинамид часто предпочтительнее ниацина, который вызывает временное покраснение кожи. При приготовлении и переработке пищевых продуктов ниацин, как правило, не разрушается. В значительном количестве содержится в дрожжах, печени, рыбе и постном мясе. Промышленное производство витамина основано на химическом синтезе.

Ниацин и ниацинамид получают в больших количествах для использования в качестве добавок к пищевым продуктам и лекарственным средствам. Так, их добавляют в белую муку, из которой пекут «витаминизированный» хлеб. Ниацинамид входит в состав двух коферментов, НАД и НАДФ , играющих огромную роль в метаболизме углеводов. Им лечат пеллагру, но для полного выздоровления необходим переход на полноценное питание, включающее не только этот, но и другие витамины группы В. Ниацин в организме образуется из триптофана – аминокислоты, входящей в состав белков молока, мяса и яиц. Однако полученного таким путем ниацина может быть достаточно лишь при значительном содержании триптофана в пищевых продуктах. Ежедневная потребность взрослого организма в ниацине составляет 20 мг.

Фолиевая кислота

Фолиевая, или птероилглутаминовая, кислота – пигмент желтого цвета, плохо растворимый в воде. По химической структуре представляет собой соединение глутаминовой и парааминобензойной кислот с желтым пигментом птерином. Своим названием птерин обязан крыльям бабочек, которым он придает окраску: греческое слово pteron означает крыло. Фолиевая кислота содержится в печени, дрожжах, зелени, яйцах и сое; кроме того, ее получают химическим путем. Содержание витамина определяют микробиологическим методом, причем в исследуемом образце кислоту предварительно высвобождают с помощью ферментов из тех соединений, в которых она находится в связанной форме. Фолиевая кислота играет важную роль в синтезе нуклеиновых кислот и в процессах деления и роста клеток, особенно в образовании клеток крови. В связи с этим при недостаточности фолиевой кислоты содержание эритроцитов и лейкоцитов в крови становится значительно ниже нормы, и эритроциты увеличиваются в размерах. Это заболевание, которое носит название фолиеводефицитной (мегалобластной) анемии, может возникать вследствие неполноценного питания, при беременности или тяжелом нарушении процессов всасывания; как правило, оно поддается лечению фолиевой кислотой. Ежедневная потребность в фолиевой кислоте составляет примерно 0,4 мг; терапевтические дозы существенно выше.

Витамин B6

Как и ниацин, витамин B6 является производным пиридина. В природе встречаются три его биологически активные формы: пиридоксин, пиридоксаль и пиридоксамин. Богаты витамином B6 дрожжи, печень, постное мясо и цельные зерна злаковых растений. Концентрацию в пищевых продуктах определяют микробиологическим методом. Биологическая функция этого витамина связана с обменом аминокислот и утилизацией белков в тканях. У маленьких детей из-за неправильного питания иногда развивается недостаточность витамина B6, которая сопровождается конвульсиями. У животных подобная недостаточность вызывает анемию и паралич, а у крыс – и острый дерматит (воспаление кожи).

Пантотеновая кислота

Пантотеновая кислота – азотсодержащая органическая кислота. Основные ее источники – печень, дрожжи, яичный желток, капуста брокколи; ее также получают химическим путем. Пантотеновая кислота является частью молекулы кофермента A, участвующего во многих биохимических процессах, в том числе в биологическом синтезе жиров и стероидов, с одной стороны, и в реакциях распада жиров – с другой. Ацетил-кофермент A играет ключевую роль в цикле трикарбоновых кислот и метаболизме углеводов. Каких-либо болезней человека, связанных с недостаточностью пантотеновой кислоты, не описано. Но у экспериментальных животных с помощью специальной диеты удавалось вызвать ярко выраженную недостаточность, сопровождающуюся дерматитом, поносом, перерождением нервной ткани и поседением шерсти.

Биотин

Биотин – сложное органическое соединение, в состав которого входят атомы серы и азота. Содержится в печени, яичном желтке, дрожжах и других пищевых продуктах. Сырой яичный белок обладает уникальным свойством: он связывает находящийся в пищеварительном тракте биотин и делает его недоступным для организма. У экспериментальных животных можно вызвать биотиновую недостаточность, если добавлять им в корм значительное количество сырого белка. Биотин не только поступает в организм с пищей, но и синтезируется кишечными бактериями. У экспериментальных животных недостаточность биотина проявляется тяжелым дерматитом, симптомами паралича и выпадением шерсти.

Холин

Холин обычно относят к витаминам группы В, хотя он синтезируется в организме, и в тканях его содержание гораздо выше, чем других витаминов (в сырой печени, например, примерно 0,5% веса органа). С химической точки зрения холин представляет собой соединение азота, похожее на аммиак. В наибольших количествах содержится в таких продуктах, как яичный желток, печень, постное мясо, рыба, соя и арахис. Холин легко получить химическим путем. В организме он участвует в транспорте жиров и в построении новых клеток. Наряду с фосфорной кислотой и жирными кислотами он входит в состав лецитина. Жиры в форме лецитина переносятся кровотоком из печени в другие ткани организма. При недостаточном поступлении холина с пищей в печени накапливается жир, что может служить фактором, предрасполагающим к циррозу печени. Производное холина – ацетилхолин – играет важную роль в нервной деятельности. Ежедневная потребность человека в холине остается неизвестной, но, по-видимому, она довольно высока. В организме млекопитающих холин образуется из аминокислоты метионина.

Витамин B12

Недостаточность витамина B12 вызывает пернициозную анемию – болезнь, которой чаще всего страдают пожилые люди. Этот витамин – единственное из биологически активных соединений, в состав которого входит кобальт, отсюда его другое название – кобаламин. Он был выделен в двух формах – B12a и B12b, обладающих одинаковой активностью. В пищевых продуктах растительного происхождения витамин B12 отсутствует; в отличие от других витаминов группы B его синтезируют не растения, а некоторые бактерии и почвенные грибы. Из природных источников был выделен кофермент, в состав которого входит витамин B12. В очень небольших количествах (примерно одна часть на миллион) этот витамин содержится в печени, постном мясе, рыбе, молоке и яйцах. Его недостаточность у молодых животных приводит к замедлению роста и высокой смертности. Как и фолиевая кислота, витамин B12 принимает участие в синтезе нуклеиновых кислот. Его концентрацию измеряют микробиологическим методом, а промышленное получение осуществляется путем микробиологического синтеза.

Витамин С

Витамин С – аскорбиновая кислота, или противоцинготный витамин, – по своей структуре сходен с глюкозой, из которой его и получают в промышленности. В растворе витамин С нестабилен, особенно в щелочной среде. При длительном приготовлении пищи может разрушаться. Витамина С много в свежих фруктах и овощах.

У человека, человекообразных обезьян, морских свинок, плодоядных летучих мышей (семейство крылановых) и некоторых птиц витамин С, играющий, по-видимому, роль кофермента, должен поступать в организм с пищей. Другие животные могут вырабатывать его сами. Ежедневная потребность в этом витамине у здоровых людей составляет 30–60 мг.

Список литературы

Мецлер Д. Биохимия, тт. 1–3. М., 1980

Марри Р., Греннер Д., Майес П., Родуэлл В. Биохимия человека, т. 2. М., 1


Информация о работе «Витамины»
Раздел: Биология и химия
Количество знаков с пробелами: 33872
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
40529
0
0

... ещё неясен,поэтому пока ещё не представляется возможность трактовать все авитаминозы как состояния,возникающие на почве нарушения функций тех или иных коферментных систем. С открытием витаминов и выяснением их природы открылись новые перспективы не только в предупреждении и лечении авитаминозов,но и в области лечения инфекционных заболеваний.Выяснилось,что некоторые фармацевтические препараты ( ...

Скачать
31744
2
3

... триптофана и пиридоксина, например, при резком преобладании в пищевом рационе кукурузы (маиса). Суточная потребность в этом витамине для людей исчисляется в 15-25 мг для взрослых и 15 мг для детей. 3.4.3. РОЛЬ В ОБМЕНЕ ВЕЩЕСТВ. Никотиновая кислота, точнее, её амид, играет исключительно важную роль в обмене веществ. Достаточно сказать, что в состав ряда коферментных групп, катализирующих тканевое ...

Скачать
46851
19
9

... два водорода, переходит в нафтогидрохиноновую. Эта реакция в присутствии кислорода воздуха обратима. Реакция восстановления нафтохинонов (окрашенных веществ) сопровождается их обесцвечиванием. Витамины К способны непосредственно взаимодействовать с кислородом, присоединяя его в положении 2, 3 молекулы нафтохинона. Продуктом окисления является эпоксид: Эпоксид витамина К1 Эпоксиды ...

Скачать
32725
0
0

... лиственницы) и листья черной смородины. Водные вытяжки из них представляют собой почти всегда доступное средство для предупреждения и лечения цинги. РОЛЬ В ОБМЕНЕ ВЕЩЕСТВ. По-видимому, физиологическое значение витамина С теснейшим обра- зом связано с его окислительно-восстановительными свойствами. Возмож- но, что этим следует объяснить и изменения в углеводном обмене при скорбуте, заключающиеся в ...

0 комментариев


Наверх