АЦП

9816
знаков
2
таблицы
1
изображение

Институт Переподготовки Кадров

Уральского Государственного Технического Университета


Кафедра микропроцессорной техники


Оценка работы


Члены комиссии


АЦП ДЛЯ ИЗМЕРЕНИЯ ФОРМЫ СЛУЧАЙНОГО

ЭЛЕКТРИЧЕСКОГО СИГНАЛА


Курсовая работа


Пояснительная записка


Руководитель

к.т.н. доцент Д.Г.Матюнин


Слушатель

Группа СП-913 А.А.Соколов


ЕКАТЕРИНБУРГ

1997


СОДЕРЖАНИЕ


ПОСТАНОВКА ЗАДАЧИ……………………………………………………-

ВВЕДЕНИЕ……………………………………………………………………………3

1. СТРУКТУРНАЯ СХЕМА АЦП…………………………………4

2. БУФЕРНЫЙ УСИЛИТЕЛЬ…………………………………………6

3. ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ………………7

4. СХЕМА ЗАПУСКА………………………………………………………8

5. АЦП КР1107ПВ2………………………………………………………9

6. КПУ "ЭЛЕКТРОНИКА МС 2702" …………………12

7. ПРОГРАММА РАБОТЫ КОНТРОЛЛЕРА………………13

ЗАКЛЮЧЕНИЕ………………………………………………………………………15

ПРИЛОЖЕНИЕ 1…………………………………………………………………16

ПРИЛОЖЕНИЕ 2…………………………………………………………………17

ПРИЛОЖЕНИЕ 3…………………………………………………………………18

БИБЛИОГРАФИЧЕСКИЙ СПИСОК…………………………………19


ТЕХНИЧЕСКОЕ ЗАДАНИЕ

Проектирование восьмиразрядного быстродействующего АЦП для наблюдения формы сигнала снимаемого с фэу.


Особые дополнительные сведения: Входное сопротивление 75 ом

Измеряемые входные амплитуды 0-2В

Измеряемые времена от 10S до 1 mS

Погрешности в измерении амплитуды и времени не более 5%


-3-

ВВЕДЕНИЕ

Последние десятилетия обусловлены широким внедрением в отрасли народного хозяйства средств микроэлектроники и вычислительной техники, обмен информацией с которыми обеспечивается линейными аналоговыми и цифровыми преобразователями (АЦП и ЦАП).

Современный этап характеризуется больших и сверхбольших интегральных схем ЦАП и АЦП обладающими высокими эксплуатационными параметрами: быстродействием, малыми погрешностями, многоразрядностью. Включение БИС ЦАП и АЦП единым, функционально законченным блоком сильно упростило внедрение их в приборы и установки, используемые как в научных исследованиях, так и в промышленности и дало возможность быстрого обмена информацией между аналоговыми и цифровыми устройствами.


-4-


1. СТРУКТУРНАЯ СХЕМА АЦП

Структурная схема АЦП представлена на рис. 1.1


Структурная схема АЦП


рис 1.1


Она содержит буферный усилитель (БУ), посредством которого осуществляется развязка высокой входной ёмкости АЦП микросхемы КР1107ПВ2 от источника сигнала. Источник опорного напряжения (ИОН) служит для питания делителя напряжения в АЦП, для подачи опорных квантованных напряжений на компараторы. Оцифровка входного аналогового сигнала осуществляется в АЦП (микросхема КР1107ПВ2), которая преобразует аналоговый сигнал амплитудой 02 В с частотой преобразования не более 20 МГц в восьмибитный выходной код, вид которого определяется програмно, подачей двухбитного кода на входы 36, 41 микросхемы. Выходной код, через магистральный усилители (МУ1, МУ2) поступает на порт РВ контроллера ввода-вывода КР580ВВ55 запрограммированного на ввод, а затем в зависимости от программы либо в ОЗУ используемого в данной схеме программируемого

-5-


универсального контроллера (КПУ) "Электроника МС2702", либо через порт РА, запрограммированного на выход, выводится на сопрягаемый контроллер для обработки данных \1\.

Седьмой бит порта РС используется как стробирующий АЦП канал. В этот бит выставляется логическая еденица с частотой, определяемой программой контроллера.

Запуск АЦП на преобразование реализован программно. При помощи схемы запуска, содержащей компараторы, срабатывающей от отрицательного сигнала амплитудой –1мВ до –4В и RS-триггера, выходным сигналом которого поданным на бит С7 порта РС , запускается программа преобразования АЦП. Бит С5 порта РС используется как канал сигнала готовности к началу преобразования.


-6-

2. БУФЕРНЫЙ УСИЛИТЕЛЬ

Характерной особенностью микросхемы КР1107ПВ2 является большая входная ёмкость (более 100 пф). В связи с этим, при использовании этих микросхем в измерительных устройсвах возникает необходимость в буферном каскаде для развязки источника сигнала от емкостной нагрузки. При чем на этот каскад накладываются весьма жесткие требования по стабильности коэффициента усиления, термостабильности, полосе пропускания, так же требуется высокое входное сопротивление, чтобы не вносить погрешности в измеряемый сигнал или входное сопротивление, равное волновому сопротивлению кабеля, соединяющего источник сигнала и АЦП.

Схема, указаная на рис. 2.1 может работать с ёмкостью нагрузки до 300 пФ с полосой пропускания до 20 МГц, нелинейность АЧХ - 0,2  и коэффициент передачи равный 1.

Основа буферного неинвертирующего усилителя - дифференциальный каскад, собранный на транзисторах VT1 и VT2. Нагрузкой его является схема – "токовое зеркало" на микросборке из двух подобранных по характеристикам транзисторах (DA1).

На выходе собран эмиттерный повторитель на транзисторе VT6, согласованный с дифференциальным каскадом и с токовым повторителем VT4. Резисторы R1-R3 образуют делитель напряжения для подстройки "0" на выходе усилителя без сигнала на входе. На транзисторах VT3-VT4 и диодах VD1-VD3 собраны два источника тока для питания дифференциального каскада и токового повторителя./2/


принципиальная электрическая схема буферного усилителя


Рис 2.1

-7-

3. ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ

Параллельные АЦП, такие как используемая микросхема КР1107ПВ2 построены на принципе одновременного сравнивания (преобразования) сигнала путём квантования с помощью набора компараторов, на один вход которых подаётся исследуемый сигнал, а на другой квантованные по уровню опорного напряжения. Они создаются прецизионным делителем напряжения , который питается от внешнего источника опорного напряжения, к нему предъявляются высокие требования по стабильности выходного напряжения, так как оно в большей степени определяет погрешность АЦП.

Принципиальная схема источника опорного напряжения представлена на рис. 3.1

Он выдаёт стабилизированное напряжение равное 2В, с точностью 0,01  в диапазоне теиператур от –20 до +40  С.

Выходное напряжениеформируется как разница между падением напряжения на светодиоде VD1 и эмиттерном переходе транзистора VT2. Оба эти напряжения имеют отрицательный температурный коэффициент 2мВ/град. , в следствии чего напряжение на резисторах R2 и R3 термостабильно. Транзисторы сборки VT1, резистор R1 и диод VD2 образуют стабилизатор тока светодиода VD1. В связи с тем, что температурный коэффициент напряжения светодиода несколько меньше такого же коэффициента эмиттерного перехода транзистора VT2, для компенсации разницы стабилизатор выполнен с отрицательным коэффициентом (за сче диода VD2). Для обеспечения равенства температур светодиод и транзистор VT2 должны иметь тепловой контакт.


ПРИНЦИПИАЛЬНАЯ СХЕМА ИСТОЧНИКА ОПОРНОГО НАПРЯЖЕНИЯ


Рис. 3.1


-8-


4. СХЕМА ЗАПУСКА

Для согласования времени прихода сигнала на вход установки и началом цикла преобразования АЦП служит схема запуска, представленная на рис. 4.1

Схема запуска содержит в себе компаратор, срабатывающий от отрицательного импульса, амплитудой от –1мВ до –4В и выдающий на выходе логический сигнал, либо логическую еденицу, амплитудой от 3 до 5В, либо логический ноль, амплитудой до 0.5В

Для регулировки уровня срабатывания компаратора – исключения срабатывания от шумов и наводок, служит делитель напряжения на резисторах R1 и R2, регулировка возможна в пределах от 0 до 4 В.

Сигнал с выхода компаратора подаётся на R-вход RS-триггера устанавливая уровень логической еденицы на выходе триггера и бите C7 порта РС. Этот бит опрашивается программой контроллера и при обнаружении на нём логической еденицы начинаетсятактирование АЦП и запись результата в память контроллера.

При установке в бите С5 порта РС логической еденицы сбрасывается запускающий сигнал с выхода триггера, схема запуска приводиться в готовность к новому циклу преобразования.



СХЕМА ЗАПУСКА


Рис. 4.1


-9-


5. АЦП КР1107ПВ2

Интегральная полупроводниковая микросхема КР1107ПВ2 представляет собой быстродействующий восьмиразрядный аналогоцифровой преобразователь с частотой преобразования до 20 МГц. Микросхема предназначена для преобразования входных аналоговых сигналов в диапазоне отрицательных напряжений от –2В до 0В в один из кодов параллельного считывания: прямой двоичный, обратный двоичный, прямой дополнительный, обратный дополнительный.

Построение АЦП по полностью параллельной схеме позволяет получить максимальное быстродействие при минимальной динамической погрешности без использования внешней схемы выборки хранения во всем диапазоне частоты преобразования.

Выходные уровни и уровни управляющих сигналов АЦП соответствуют уровням ТТЛ.

Конструктивно ИС КР1107ПВ2изготовлена в металлокерамическом корпусе с 64 выводами типа 2136.64-1. Особенностью корпуса является наличие радиатора, выполненного в виде анодированной пластины из аллюминевого сплава. Такая конструкция обеспечивает работу микросхемы в диапазоне температур –10  +70 С.


Назначение выводов ИС КР1107ПВ2


Опорное напряжение U1

Вход (аналоговый сигнал)

Общий (аналоговая земля)

Вход корректировки нелинейности

Опорное напряжение U2

Напрежение питания Uп1

Общий (цифровая земля)

Тактовый сигнал

Выход 8 (младший разряд)

Выход 7

Выход 6

Выход 5

Управление выходным кодом, вход 2

Выход 4

Выход 3

Выход 2

Выход 1 (старший разряд)

Управление выходным кодом, вход 1

Напряжение питания Uп2


11

13, 15, 16, 18, 20

14, 19

17

22

28, 43

29, 42

30

32

33

34

35

36

37

38

39

40

41

47-50

Основные электрические параметры


-10-


Напрежение питания Uп1

Напрежение питания Uп2

Выходное напряжение высокого уровня

Выходное напряжение низкого уровня

Напрежение смещения "0" на выходе

Абсолютная погрешность преобразования в конечной точке шкалы

Дифференциальная нелинейность

Напрежение источника U1

Напряжение источника U2

Максимальное время преобразования

Максимальная частота преобразования

Апертурная неопределенность

Входная ёмкость


-6В

>2.4B

>0.4B

-0.10.1B

-0.10.1B

-11 ЕМР

-0.10.1B

-2В


Информация о работе «АЦП»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 9816
Количество таблиц: 2
Количество изображений: 1

Похожие работы

Скачать
44856
1
0

... контролируемого преобразователя к установке контроля. Линии связи должны быть такой длины и такого сопротивления, чтобы падение напряже­ния на них не вызвало значительного увеличения по­грешности измерения параметров ИМС АЦП. Если проверяют ЦАП с токовым выходом, то к его выходу подключают операционный усилитель, обеспечи­вающий преобразование выходного тока ЦАП в напря­жение. При этом резистор ...

Скачать
48186
2
9

... і і вибір апаратних засобів; 2) розробка прикладного програмного забезпечення; 3) комплексування апаратних засобів і програмного забезпечення; Дана робота присвячена розробці мікропроцесорного АЦП порозрядного врівноваження із ваговою надлишковістю, що калібрується. 1. Аналіз технічного завдання Для з’ясування вимог до технічного завдання, доцільно навести структуру АЦП порозрядного врі ...

Скачать
9002
0
0

... структуры АЦП. Проанализировав алгоритм преобразования можно выбрать следующую структуру устройства рис.1.2. Данная структура содержит: устройство управления (УУ), предназначенное для формирования выходного кода АЦП; ЦАП, необходимого для преобразования кодов в напряжение; Схему сравнения (СС), необходимую для сравнения входного напряжения АЦП и напряжения с выхода ЦАП. Данный АЦП ...

Скачать
25333
0
6

... требуется. Необходимо лишь провести технически грамотный выбор по каталогам, руководствуясь теми же принципами системности и агрегирования, как и при выборе других технических средств. вторичный измерительный преобразователь датчик Литература 1. Автоматизация физических исследований и эксперимента: компьютерные измерения и виртуальные приборы на основе Lab VIEW / под ред. П.А. Бутыркина. ...

0 комментариев


Наверх