Законченная программа

8332
знака
1
таблица
0
изображений

Разберем процесс написания программы для рисования на экране геометрических фигур. Она естественным образом разделяется на три части:

Администратор экрана: подпрограммы низкого уровня и структуры данных, определяющие экран; он ведает только точками и прямыми линиями;

Библиотека фигур: набор определений основных фигур вроде прямоугольника и круга и стандартные программы для работы с ними; и

Прикладная программа: множество определений, специализированных для данного приложения, и код, в котором они используются.

Эти три части скорее всего будут писать разные люди (в разных организациях и в разное время). При этом части будут скорее всего писать именно в указанном порядке с тем осложняющим обстоятельством, что у разработчиков нижнего уровня не будет точного представления, для чего их код в конечном счете будет использоваться. Это отражено в приводимом примере. Чтобы пример был короче, графическая библиотека предоставляет только весьма ограниченный сервис, а сама прикладная программа очень проста. Чтобы читатель смог испытать программу, даже если у него нет совсем никаких графических средств, используется чрезвычайно простая концепция экрана. Не должно составить труда заменить эту экранную часть программы чем-нибудь подходящим, не изменяя код библиотеки фигур и прикладной программы.

Администратор Экрана

Вначале было намерение написать администратор экрана на C (а не на C++), чтобы подчеркнуть разделение уровней реализации. Это оказалось слишком утомительным, поэтому пришлось пойти на компромисс: используется стиль C (нет функций членов, виртуальных функций, определяемых пользователем операций и т.п.), однако применяются конструкторы, надлежащим образом описываются и проверяются параметры функций и т.д. Оглядываясь назад, можно сказать, что администратор экрана очень похож на C программу, которую потом модифицировали, чтобы воспользоваться средствами C++ не переписывая все полностью.

Экран представляется как двумерный массив символов, работу с которым осуществляют функции put_point() и put_line(), использующие при ссылке на экран структуру point:

// файл screen.h

const XMAX=40, YMAX=24;

struct point {

int x,y;

point() {}

point(int a, int b) { x=a; y=b; }

};

overload put_point;

extern void put_point(int a, int b);

inline void put_point(point p) { put_point(p.x,p.y); }

overload put_line;

extern void put_line(int, int, int, int);

inline void put_line(point a, point b)

{ put_line(a.x,a.y,b.x,b.y); }

extern void screen_init();

extern void screen_refresh();

extern void screen_clear();

#include

Перед первым использованием функции put экран надо инициализировать с помощью screen_init(), а изменения в структуре данных экрана отображаются на экране только после вызова screen_refresh(). Как увидит пользователь, это "обновление" ("refresh") осуществляется просто посредством печати новой копии экрана под его предыдущим вариантом. Вот функции и определения данных для экрана:

#include "screen.h"

#include

enum color { black="*", white=" " };

char screen[XMAX][YNAX];

void screen_init()

{

for (int y=0; y=a || a<=b) y0 += dy, eps -= two_a;

}

}

Предоставляются функции для очистки экрана и его обновления:

void screen_clear() { screen_init(); } // очистка

void screen_refresh() // обновление

{

for (int y=YMAX-1; 0<=y; y--) { // сверху вниз

for (int x=0; x

Библиотека Фигур

Нам нужно определить общее понятие фигуры (shape). Это надо сделать таким образом, чтобы оно использовалось (как базовый класс) всеми конкретными фигурами (например, кругами и квадратами), и так, чтобы любой фигурой можно было манипулировать исключительно через интерфейс, предоставляемый классом shape:

struct shape {

shape() { shape_list.append(this); }

virtual point north() { return point(0,0); } // север

virtual point south() { return point(0,0); } // юг

virtual point east() { return point(0,0); } // восток

virtual point neast() { return point(0,0); } // северо-восток

virtual point seast() { return point(0,0); } // юго-восток

virtual void draw() {}; // нарисовать

virtual void move(int, int) {}; // переместить

};

Идея состоит в том, что расположение фигуры задается с помощью move(), и фигура помещается на экран с помощью draw(). Фигуры можно располагать относительно друг друга, используя понятие точки соприкосновения, и эти точки перечисляются после точек на компасе (сторон света). Каждая конкретная фигура определяет свой смысл этих точек, и каждая определяет способ, которым она рисуется. Для экономии места здесь на самом деле определяются только необходимые в этом примере стороны света. Конструктор shape::shape() добавляет фигуру в список фигур shape_list. Этот список является gslist, то есть, одним из вариантов обобщенного односвязанного списка, определенного в #7.3.5. Он и соответствующий итератор были сделаны так:

typedef shape* sp;

declare(gslist,sp);

typedef gslist(sp) shape_lst;

typedef gslist_iterator(sp) sp_iterator;

поэтому shape_list можно описать так:

shape_lst shape_list;

Линию можно построить либо по двум точкам, либо по точке и целому. В последнем случае создается горизонтальная линия, длину которой определяет целое. Знак целого указывает, каким концом является точка: левым или правым. Вот определение:

class line : public shape {

/*

линия из "w" в "e"

north() определяется как ``выше центра

и на север как до самой северной точки""

*/

point w,e;

public:

point north()

{ return point((w.x+e.x)/2,e.ydraw();

screen_refresh();

}

И вот, наконец, настоящая сервисная функция (утилита). Она кладет одну фигуру на верх другой, задавая, что south() одной должен быть сразу над north() другой:

void stack(shape* q, shape* p) // ставит p на верх q

{

point n = p->north();

point s = q->south();

q->move(n.x-s.x,n.y-s.y+1);

}

Теперь представим себе, что эта библиотека считается собственностью некоей компании, которая продает программное обеспечение, и что они продают вам только заголовочный файл, содержащий определения фигур, и откомпилированный вариант определений функций. И у вас все равно остается возможность определять новые фигуры и использовать для ваших собственных фигур сервисные функции.

Прикладная Программа

Прикладная программа чрезвычайно проста. Определяется новая фигура my_shape (на печати она немного похожа на рожицу), а потом пишется главная программа, которая надевает на нее шляпу. Вначале описание my_shape:

#include "shape.h"

class myshape : public rectangle {

line* l_eye; // левый глаз

line* r_eye; // правый глаз

line* mouth; // рот

public:

myshape(point, point);

void draw();

void move(int, int);

};

Глаза и рот - отдельные и независимые объекты, которые создает конструктор my_shape:

myshape::myshape(point a, point b) : (a,b)

{

int ll = neast().x-swest().x+1;

int hh = neast().y-swest().y+1;

l_eye = new line(

point(swest().x+2,swest().y+hh*3/4),2);

r_eye = new line(

point(swest().x+ll-4,swest().y+hh*3/4),2);

mouth = new line(

point(swest().x+2,swest().y+hh/4),ll-4);

}

Объекты глаза и рот порознь рисуются заново функцией shape_refresh(), и в принципе могут обрабатываться независимо из объекта my_shape, которому они принадлежат. Это один способ определять средства для иерархически построенных объектов вроде my_shape. Другой способ демонстрируется на примере носа. Никакой нос не определяется, его просто добавляет к картинке функция draw():

void myshape::draw()

{

rectangle::draw();

put_point(point(

(swest().x+neast().x)/2,(swest().y+neast().y)/2));

}

my_shape передвигается посредством перемещения базового прямоугольника rectangle и вторичных объектов l_eye, r_eye и mouth (левого глаза, правого глаза и рта):

void myshape::move()

{

rectangle::move();

l_eye->move(a,b);

r_eye->move(a,b);

mouth->move(a,b);

}

Мы можем, наконец, построить несколько фигур и немного их подвигать:

main()

{

shape* p1 = new rectangle(point(0,0),point(10,10));

shape* p2 = new line(point(0,15),17);

shape* p3 = new myshape(point(15,10),point(27,18));

shape_refresh();

p3->move(-10,-10);

stack(p2,p3);

stack(p1,p2);

shape_refresh();

return 0;

}

Еще раз обратите внимание, как функции вроде shape_refresh() и stack() манипулируют объектами типов, определяемых гораздо позже, чем были написаны (и, может быть, откомпилированы) сами эти функции.

Результатом работы программы будет:

 ***********

 * *

 * *

 * *

 * *

 * *

 * *

 * *

 * *

 * *

 ***********

*****************

*************

* *

* ** ** *

* *

* * *

* *

* ********* *

* *

*************


Информация о работе «Законченная программа»
Раздел: Информатика, программирование
Количество знаков с пробелами: 8332
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
24683
2
0

... особенностей эксплуатации машин; -     использовать системы машин в типовых технологических процессах. 1.3 Связь дисциплины с другими предметами. Изучение "Системы машин в лесном хозяйстве и лесной промышленности" опирается на знание других специальных дисциплин: -     тракторы и автомобили с основами технической механики; -     лесохозяйственные машины и их применение; -     лесная ...

Скачать
21087
5
0

... никакого строгого установления границ на заданиях. Когда проект закончен, группа расформирована. Рабочие назначены на их проекты. Анализ текста, переведенного программой PROMT Гигант При работе с данным программным продуктом были обнаружены следующие погрешности при переводе текста. Лексический анализ текста показал, что PROMT по большей части адекватно переводит простые части речи, но ...

Скачать
150022
4
0

... используются театрализация, различные жанры искусства, аттракционность воздействия оформленных средствами быстрой и непрерывной смены ощущений, неожиданностями и эксцентрическими разрешениями сценических ситуаций. Глава 2. Технологические этапы постановки концертно-зрелищных программ   2.1 Номер – основа технологии постановки концертно-зрелищных программ Теперь необходимо рассмотреть ...

Скачать
70515
20
2

... 12,9 6088090 Поросята на доращивании 3994 4 5831240 20 29156200 12 17493720 Откормочный молодняк 6463 6,5 1470332,5 97 22882251 32,3 76195538 Взрослые на Откорме 65 0,13 3084,25 1,3 30842,5 0,72 17082 13. Разработка генплана свиноводческого предприятия с законченным оборотом стада   Архитектурно-строительные решения свиноводческих зданий должны обеспечивать оптимальные ...

0 комментариев


Наверх