Батура П. И.
Для очистки промышленных газовых выбросов от органических примесей и вредных сернистых соединений применяют различные методы: абсорбционные, термические, адсорбционные, каталитические и комбинированные. Наиболее перспективные — термические и каталитические методы обезвреживания органических примесей в газовых выбросах химических, коксохимических, металлургических заводов и других предприятий. Они надежны, дешевы и достаточно эффективны [1—3].
Процессы глубокого термокаталитического окисления проводят в специальных реакторах, которые обычно работают в двух режимах: стационарном и нестационарном. Термокаталитические реакторы производительностью 5, 10 и 25 тыс. м3/ч разрабатывает Институт газа АН УССР. Они отличаются компактностью, простотой в изготовлении и надежностью.
Реактор представляет собой конструкцию башенного типа, включающую многоходовой трубчатый воздухоподогреватель — рекуператор, встроенный смешивающий воздухоподогреватель и газовую горелку, в верхней части размещена каталитическая камера (рис. 1). Реактор оборудован системой КИПиА, позволяющей выполнять по заданной программе пусковые и остановочные операции, а также поддерживать оптимальный тепловой режим с соблюдением требований безопасности. Реакторы производительностью 5 и 10 тыс. м3/ч с платиновым катализатором внедрены и успешно работают [4].
В Дзержинском филиале НИИОгаза (г. Дзержинск Горьковской обл.) выполнены работы по обезвреживанию газов от окислительных колонн синтеза жирных кислот [5]. Установка производительностью 25—30 тыс. м3/ч включает двухполочный реактор и два теплообменника. Температура газов в I ступени 190—200, во II 240— 450 °С, а на выходе из слоев катализатора достигает соответственно 250—450 и 330—580 °С. Высота слоя катализатора 300—350 мм, линейная скорость потока газов приблизительно 1 м/с, степень очистки после II ступени 99 %.
Имеются данные о реакторе, работающем в нестационарном режиме, т. е. в режиме переключения направления потока реакционной смеси. В таком реакторе можно проводить обезвреживание разбавленных органических выбросов и оксида углерода [6, 7]. На рис. 2 представлен реактор с катализатором на сетке, предназначенный для окисления метанола [8].
Самым простейшим аппаратом является реактор с неподвижным слоем катализатора (рис. 3). Однако в нем трудно равномерно распределить поток газов и избежать градиентов температуры по слою катализатора, а также предотвратить разложение реагентов на перегретых участках при снижении скорости реакции на ненагретых. Более сложен полочный реактор с несколькими слоями катализатора (рис. 4). В нем поток газа лучше распределяется и охлаждается между слоями, причем можно вводить горячий и холодный газ, а в разных слоях поместить разные катализаторы; кроме того, можно избирательно заменять слой дезактивированного контакта и поддерживать различную температуру в слоях.
В работе [9] приведены результаты моделирования каталитического реактора очистки отходящих газов лакокрасочного производства. В газах концентрация органических примесей не превышала 500 мг/м3 (циклогексан, н-ксилол, пентан и др.). Даны рекомендации по выбору оптимального режима и экономики процесса. Основные данные: сопротивление системы не более 4 кПа, высота слоя катализатора 50—200 мм; температура процесса 425—450 °С, скорость газа в реакторе 0,6 м/с, время контакта 0,12 с.
Реактор производительностью 50 тыс. м3/ч разработан Дзержинским филиалом НИИОгаза и серийно изготовляется заводом химического машиностроения (г. Пенза). Его диаметр 500 мм, высота 2200 мм.
Рис. 1. Термокаталитический реактор:
1— входные патрубки; 2 — выходной канал; 3 — теплообменник; 4 — газовая горелка; 5 —катализатор
Рис. 2. Реактор с катализатором в виде сетки:
1—сетка; 2—люк и смотровое окно; 3— термопары; I, II—соответственно вход и выход газов
Рис. 3. Реактор с неподвижным слоем катализатора:
1—газораспределитель; 2—камера смешения; 3—катализатор; 4— решетка; 5 — термопары; I—ввод газов; II—очищенные газы
Рис.4. Полочный реактор:
1-опорная сетка; 2-слой катализатора; I-ввод газов; II-ввод холодного воздуха; III-очищенные газы
Институтом газа АН УССР совместно с конструкторским бюро и мастерскими опытного производства разработана установка, действующая на комбинате печати “Радянська Україна”. Основные данные реактора: объем катализатора 0,4 м3, температура процесса 380 °С, сопротивление 1,8 кПа; габариты 3,5*3,5*8 м, масса установки до 6 т.
Рис. 5. Реактор с двухкольцевым размещением катализатора:
1— корзины с катализатором; 2 — внутреннее кольцо с катализатором; I, II—соответственно вход и выход газов; III—выгрузка катализатора; IV—загрязненные газы
Минский конструкторско-технологический экспериментальный институт разработал простейшие реакторы УСК-39, УСК-41 и др. На рис. 5 показан реактор с двухкольцевым размещением катализатора конструкции Дзержинского филиала НИИОгаза. В этом же институте создан реактор для дожигания газов от сушильных камер окрасочных линий машиностроительных заводов (рис. 6). Подача газов осуществлена по кольцевому каналу, где они смешиваются с дымовыми газами от сжигания жидкого или газообразного топлива.
Рис. 6. Реактор:
1—катализатор; 2—воздухораспределитель; 3—горелка, 4 — распределитель газов; I—ввод газов; II—очищенные газы; III—топливо
Рис. 7. Каталитический реактор:
1—катализатор; 2—панельные горелки; 3—кожухотрубчатый теплообменник; I—природный газ; II, III—соответственно выход и вход газов
В аппарате Гипрогазоочистки (рис. 7) газы поступают в трубное пространство теплообменника и далее в реактор, где смешиваются с дымовыми газами сжигания топлива в панельных горелках, проходят через слой катализатора, а затем через межтрубное пространство теплообменника сбрасываются в атмосферу. Аппараты, представленные на рис. 6 и 7, прошли промышленные испытания и хорошо зарекомендовали себя в рабочих режимах.
Наиболее многочисленны реакторы со встроенными рекуператорами тепла типа ТКВ. Технические характеристики таких реакторов приведены в работе [10].
Подобные аппараты применяют в Польше; они разработаны Проектным бюро охраны природы “Проат” (рис. 8). В Германии создан реактор типа КВ, в корпусе которого размещен слой катализатора и теплообменник (рис. 9). Разработано пять типоразмеров таких реакторов производительностью от 5 да 25 тыс. м3/ч. Иногда рекуператор тепла примыкает к реактору. Такие установки имеются в ФРГ и Англии. В Венгрии, Франции и США внедрены установки с верхней подачей газа по кольцевым каналам [11].
Рис. 8. Реактор типа ТКВ:
1—горелка; 2—отражатель; 3—катализатор; I—ход газов; II—топливо; III—очищенные газы
Рис. 9. Реактор типа КВ:
1—катализатор; 2—теплообменник; 3—горелка; I—загрязненные газы; II—очищенные газы; III-топливо
Имеются данные о работе опытно-промышленной установки для очистки газов, которая разработана в Ленинградском технологическом институте совместно с Институтом катализа СО АН СССР. Температура в слое катализатора достигает 450—500 °С.
Таким образом, каталитический способ очистки газовых выбросов от органических примесей внедрен в различных отраслях промышленности. Однако большинству реакторов присущи недостатки: периодичность работы, низкая производительность, отсутствие пылеочистных устройств и высокая стоимость [12].
Компактный и экономичный реактор для каталитического дожигания отходящих газов разработан в нашем институте (рис. 10).
Рис. 10. Изотермический реактор:
8 — вал, 9, 10 — опоры, 11— завихритель воздуха, 12 — опорное кольцо, 13 — направляющая опорного кольца, I—вход газов, II—загрузка катализатора, III—выход очищенных газов, IV—выгрузка катализатора
Это аппарат циклонного типа с радиальным вводом газа, в котором сплошная центральная труба предназначена для вывода газа, прошедшего через слой катализатора 5 и отдавшего свое тепло, например, воде теплообменника 6. Внутри центральной трубы с образованием кольцевого зазора, ограниченного ее стенкой, обечайкой корзины 2, кольцом 3 и крышкой 4, установлена корзина с катализатором и примыкающий к ней трубчатый теплообменник 6; обечайки корзин 2 и 7 перфорированы. В таком реакторе одновременно протекают три процесса: очистка газов от пыли в поле центробежных сил и на гофрах внутренней обечайки корзины 7; каталитическое окисление органических примесей в слое катализатора и, наконец, утилизация тепла.
Капитальные затраты на строительство подобных реакторов, как правило, на 15—20 % меньше, степень очистки газов от пыли на 1,5—1,8 % выше. Совмещенный реактор можно разместить на площади 60—70 м2, а промышленный реактор такой же производительности (например, 20 тыс. м3/ч) требует не меньше 120 м2. Замену катализатора можно производить с помощью запорного устройства без остановки реактора. На основании лабораторных исследований подобраны дешевые катализаторы: марганцевая руда, марганцевый агломерат и меднохромовый контакт. Реактор рекомендован для внедрения на опытной установке шахты и на химическом заводе.
Список литературы1. Термокаталитические реакторы для очистки газов // Каталожный листок / Химнефтемаш. М.: ЦИНТИ, 1984.— 84 с.
2. А. с. 1060214 СССР. Реактор для проведения каталитических процессов / А. М. Сычева, В. С. Генкин, С. И. Мельников, Н М. Дюрик и др. // Открытия. Изобретения. 1983. № 46. С. 18, 19.
3. Беляков Б. П., Исаков И. Г., Шейко А. В. Термические методы обезвреживания промышленных газообразных выбросов // Промышленная и санитарная очистка газов: Обзор, информ. Сер. ХМ-14/ ХИНТИхимнефтемаш. 1983.— 21 с.
4. Ледокова Г. М., Попова Н. М., Сокольский Д. В. и др. Термокаталитическая очистка газовых выбросов производства пластмасс // Каталитическая очистка газов: Матер. IV Всесоюзн. конф. Ч. 2.— Алма-Ата. 1985. С. 83—88.
5. Шафранский Е. Л., Дряхлое А. С., Калинкина Л. И. и др. / Там же. С. 89—93.
6. А. с. 849594 СССР. Способ очистки отходящих газов / Г. К. Боресков, Ю. Ш. Матрос, В. Г. Луговской // Открытия. Изобретения. 1982. № 14. С. 320.
7. А. с. 882056 СССР. Способ очистки отходящих газов / Г. К- Боресков, Ю. Ш. Матрос, В. М. Пажилова и др. // Открытия. Изобретения. 1982. № 15. С. 287.
8. Катализ в промышленности / А. Слейш, У. Чоудри, Ф. Вагнер и др.: Пер. с англ, под ред В. М. Грязнова.— М.: Мир, 1986.— 291 с.
9. Дряхлое А. С., Калинкина Л. И., Жданович Н. В. и др. Об особенностях моделирования реактора санитарной очистки воздуха... // Каталитическая очистка газов: Матер. III Всесоюзн. конф. Ч. I.— Новосибирск. 1981. С. 121—128.
10. МРТ 37.056.142-82. Аппараты очистки газовых выбросов с замкнутым циклом и автономной системой управления. Унифицированные сборочные единицы.— М.: Стандарты, 1982.— 91 с.
И. Губайдулин Р. 3., Квасов А. А., Шурин Р. М. Современные аппараты каталитической очистки газовых выбросов // Промышленная и санитарная очистка газов: Обзор, информ. Сер. ХМ-14. / ЦИНТИхимнефтемаш. 1985.— 29 с.
12. Торопкина Г. Н., Калинкина Л. И. Технико-экономические показатели промышленной очистки газовых выбросов от органических веществ // Промышленная и санитарная очистка газов: Обзор, информ. / ЦИНТИхимнефтемаш. 1983. С. 4
Похожие работы
... обезвреживаемых газов, содержащих углеводороды, не менее 500-650°С, а содержащих оксид углерода - 660-750° С. катализатор обезвреживание токсичный сточный Глава 3. Применение катализа для защиты окружающей среды Универсальность каталитических методов позволяет решать самые сложные проблемы обезвреживания и утилизации антропогенных выбросов промышленных предприятий. Это касается как ...
... , то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Рис.1. Катионитовый фильтр: 1 – катионит; 2 – песок Трудно провести границу между адсорбционными и каталитическими методами газоочистки, так как такие традиционные адсорбенты, как активированный уголь, цеолиты, служат активными катализаторами для многих химических реакций. Очистку газов на ...
... нагрузки на окружающую среду. Экологический паспорт промышленного предприятия используется в целях государственного экологического контроля. Структура экологического паспорта определяется ГОСТ 17.0.0.04-90 "Охрана природы. Экологический паспорт промышленного предприятия. Основные положения" [50а]. В экологическом паспорте предприятия отражены его экономические, технологические характеристики, ...
... биогеохимический кругооборот. В социально-экономических системах около 90% материальных ресурсов переходит в отходы, а основное количество энергии используется в производстве и потреблении. Поэтому главной задачей промышленной экологии является нахождение путей для рационального использования природных ресурсов, предотвращения их исчерпания, деградации и загрязнения окружающей среды, а в конечном ...
0 комментариев