4 ПРОГРАМНА РЕАЛІЗАЦІЯ

4.1 Опис алгоритму та структури програми

Рис.4.1.1


Програма виводить мінімальний шлях між двома зазначеними вершинами у графі і його довжину. При запуску програми на екран виводиться запит про введення ваг ребер досліджуваного графа. Дані, введені користувачем, відображаються у вигляді матриці суміжності, в якій не існуючі ребра позначаються нулями. Після зазначеним ребрах присвоюється значення 65535, яке приймається за нескінченність. Наступним етапом виконання програми є запит про введення номерів вершин, між якими необхідно дізнатися шлях. У випадку, якщо початкова та кінцева вершини співпадають, з'являється повідомлення і робота програми завершується. В іншому випадку виконується безпосередньо алгоритм Дейкстри, схема якого наведена у додатку В. Результатом програми є вивід на екран вершин, через які проходить мінімальний шлях, а також виведення довжини маршруту. Якщо шляху між заданими точками не існує - виводиться відповідне повідомлення.

4.2 Опис використаних програмних засобів

Таблица 4.2.1–Опис змінних

Змінна Тип Опис
n int Кількість точок (вершин) графа
i,j int Лічильники
p int Номер найкоротшого шляху і найменшої довжини шляху
xn int Номер початкової точки (вершини)
xk int Номер кінцевої точки (вершини)
flag[11] int Масив, i-й елемент якого має значення 0, коли i-й шлях і відстань тимчасові, і приймає значення 1, коли i-й шлях і відстань стають постійними
c[11][11] word (unsigned int)

Масив i-j елемент якого містить відстань між i-й і j-й крапками (вершинами)Зауваження:

1. с[i][i]=¥

2. c[i][j]=c[j][i]

s[80] char Рядкова змінна, яка містить проміжні значення шляху
path[80][11] char Масив рядків, який містить шляхуЗауваження:Після проходження обробки за алгоритмом Дейкстри p-й елемент масиву містить найкоротший шлях.
l[11] word (unsigned int) Масив, який містить довжини шляхів (path)Зауваження:Після проходження обробки за алгоритмом Дейкстри p-й елемент масиву містить довжину найкоротшого шляху.

Крім стандартних функцій з бібліотек iostream.h, string.h, stdio.h, conio.h були використані також наступні функції.• word minim (word x, word y) - функція, яка повертає мінімальне з x і y.

Рис.4.2.1

• int min (int n) - функція, яка повертає номер елемента масиву l [i] мінімальної «невідмічений» довжиною шляху (flag [i] = 0).


Рис.4.2.2


5. ІНСТРУКЦІЯ КОРИСТУВАЧА

При запуску програми на екрані з'явиться вікно з інструкціями. Виконуйте ці інструкції, а саме: 1. Введіть кількість вершин досліджуваного графа. 2. Введіть ваги ребер (позитивне число). У програмі відстані від хi до xi+1 та xi+1 до хi вважаються рівними, а відстані від хi до хi - не існуючими. Якщо ребра між зазначеними вершинами не існує, введіть 0 (нуль). На екран виводиться матриця суміжності, що відображає введену інформацію. 3. Введіть номер вершини, від якої починається шуканий шлях. 4. Введіть номер вершини, у якій шлях закінчується. 5. Щоб завершити роботу програми після отримання результату натисніть Enter.


ВИСНОВОК

Таким чином, в процесі створення даного проекту розроблена програма, що реалізує алгоритм Дейкстри в Microsoft Visual C + + 6.0. Її недоліком є примітивний користувальницький інтерфейс. Це пов'язано з тим, що програма працює в консольному режимі, не додає до складності мови складність програмного віконного інтерфейсу. Також були поглиблені знання, отримані в процесі виконання лабораторних робіт з предмету «Програмування».


ПЕРЕЛІК ПОСИЛАННЯ

1. Бондарєв В.М. Програмування на С + + .- Х: «Компанія СМІТ», 2004

2. Страуструп Бьярн Мова програмування С + + (2 рік) .- «К: ДіаСофт», 1993

3. Хаханов В.І., Чумаченко С.В. Дискретна математика (теоретичне І практичне Зміст курсу) .- Кафедра АПОТ, 2002

4. Алгоритм Дейкстри

5. Конспект лекцій.


Додаток А

Текст програми

#include<iostream.h>

#include<string.h>

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

#define word unsigned int

int i, j, n, p, xn, xk;

int flag[11];

word c[11][11], l[11];

char s[80], path[80][11];

int min(int n)

{

int i, result;

for(i=0;i<n;i++)

if(!(flag[i])) result=i;

for(i=0;i<n;i++)

if((l[result]>l[i])&&(!flag[i])) result=i;

return result;

}

word minim(word x, word y)

{

if(x<y) return x;

return y;

}

void main()

{

cout<<"Vvedit` kil`kist` tochok: ";

cin>>n;

for(i=0;i<n;i++)

for(j=0;j<n;j++) c[i][j]=0;

for(i=0;i<n;i++)

for(j=i+1;j<n;j++)

{

cout<<"Vvedit` vidstan` vid x"<<i+1<<" do x"<<j+1<<": ";

cin>>c[i][j];

}

cout<<" ";

for(i=0;i<n;i++) cout<<" X"<<i+1;

cout<<endl<<endl;

for(i=0;i<n;i++)

{

printf("X%d",i+1);

for(j=0;j<n;j++)

{

printf("%6d",c[i][j]);

c[j][i]=c[i][j];

}

printf("\n\n");

}

for(i=0;i<n;i++)

for(j=0;j<n;j++)

if(c[i][j]==0) c[i][j]=65535; //безкінечнність

cout<<"Vvedit` pochatkovi tochku: ";

cin>>xn;

cout<<"Vvedit` kincevi tochku: ";

cin>>xk;

xk--;

xn--;

if(xn==xk)

{

cout<<"Pochatkova i kinceva tochku spivpadayut`."<<endl;

getch();

return;

}

for(i=0;i<n;i++)

{

flag[i]=0;

l[i]=65535;

}

l[xn]=0;

flag[xn]=1;

p=xn;

itoa(xn+1,s,10);

for(i=1;i<=n;i++)

{

strcpy(path[i],"X");

strcat(path[i],s);

}

do

{

for(i=0;i<n;i++)

if((c[p][i]!=65535)&&(!flag[i])&&(i!=p))

{

if(l[i]>l[p]+c[p][i])

{

itoa(i+1,s,10);

strcpy(path[i+1],path[p+1]);

strcat(path[i+1],"-X");

strcat(path[i+1],s);

}

l[i]=minim(l[i],l[p]+c[p][i]);

}

p=min(n);

flag[p]=1;

}

while(p!=xk);

if(l[p]!=65535)

{

cout<<"Shljah: "<<path[p+1]<<endl;

cout<<"Dovjuna shljahy: "<<l[p]<<endl;

}

else

cout<<"takogo shljahy ne isnye!"<<endl;

getch();

}


Додаток Б

Результат


Додаток В

Схема програмної реалізації алгоритму Дейкстри


Информация о работе «Пошук найкоротшого шляху на орієнтованому графі»
Раздел: Информатика, программирование
Количество знаков с пробелами: 15687
Количество таблиц: 1
Количество изображений: 7

Похожие работы

Скачать
108557
5
34

... зноманітними типами транспортних засобів з урахуванням обмеження на обсяг робот, що можуть виконати транспортні засоби. РОЗДІЛ 3 МАТЕМАТИЧНА МОДЕЛЬ ТРАНСПОРТНОЇ СИСТЕМИ ПІДПРИЄМСТВА   3.1 Структура моделі У якості структурної моделі транспортної системи підприємства можна запропонувати схему, що складається з трьох рівнів. Необхідно відзначити, що з метою деякого спрощення задачі розгляда ...

Скачать
20329
3
4

... і певну кількість нових машин). Більшість дискретних і комбінаторних задач можна вирішити шляхом перебору. Проте перебірні методи мають експоненційну складність. Проблема: знайти метод вирішення експоненційних задач за поліноміальний час. 3.1 Планування в просторі станів. Основні поняття теорії графів Граф – сукупність вершин і дуг. Для комп’ютерного опису графу використовуються: матриця і ...

Скачать
39159
0
35

... графа рівно один раз. Означення.3.2 . Зв’язний граф називається напівгамільтоновим , якщо існує ланцюг , який проходить через кожну його вершину рівно один раз. Не дивлячись на подібність в означеннях ойлерових та гамільтонових графів, відповідно теорії для цих класів графів сильно відрізняються. До теорії гамільтонових графів відноситься і задача про бродячого тор-говця, або задача про комі ...

Скачать
39276
23
35

... оцінка складності алгоритму - О(n*log(n)). Даний алгоритм має сенс застосування лише на великих обсягах даних від 500-1000 елементів. Тільки в цьому випадку можна побачити виграш алгоритму в ефективності. Для менших обсягів даних він малопридатний. 3 Синтез машини Тьюрінга 3.1 Загальні відомості Машина Тьюрінга - це кінцевий автомат, забезпечений безкінченою стрічкою і читаючою/записуючою голівкою ...

0 комментариев


Наверх