Задана следующая экономическая ситуация. Завод выпускает изделия двух типов А и В. При этом используется сырье четырех видов. Расход сырья каждого вида на изготовление еденицы продукции и запасы сырья заданы в таблице
Изделия Сырье
1234
А2102
В3011
Запасы сырья 214610
Выпуск изделия А приносит 3 денежные еденицы, В - 2 денежные единицы.
Составить план производства, обеспечивающий максимальную прибыль
а) составьте матиматическую модель задачи;
б) поясните смысл целевой функции и ограничении
Решение:
а) Математическая модель
2x1+3x2 <=21
x1 <=4
x2+ <=6
2x1+ x2 <=10
x1 >=0
x2 >=0
б) Суммарный расход каждого вида сырья на весь выпуск не должен превышать заданного ограничения.
Валовая реализация (сумма объемов реализации по каждому виду продукции в денежном выражении) должна стремиться при заданных условиях к максиму
в) Решать будем симплекс методом преобразуем неравенства в равенства, для этого введем четыре дополнительные переменные
2x1+3x2+ x3 =21
x1 + x4 =4
x2 +x5 =6
2x1+x2+ x6 =10
f=3x1+2x2+0*x3+0*x4+0*x5+0*x6 -> max
перепишем в виде систем 0 уравнений
0= 21-(2x1+3x2+x3)
0= 4-( x1 + x4)
0= 6-( x2+ х5)
0=10-(2х1+х2+ х6)
f=0-(-3x1-2x2-0*x3-0*x4-0*x5-0*x6)
Система уравнений может быть записана в виде векторного равенства
0=В - (А1х1+А2х2+А3х3+А4х4+А5х5+А6х6)
В - свободные члены
А1…А6 коэффициенты при переменных х1…х6
Линейная форма имеет вид : f=c1x1+c2x2+c3x3+c4x4+c5x5+c6x6
Векторы А3,А4, А5,А6 составляют базис
Составляем первую симплекс таблицу
Базисный векторКоэф.лин. формы свектор св. член bb/a3 A12 A20 A30 A40 A50 A6
А302110,5231000
A4044100100
A5060010010
A60105210001
индексная строка fj-сj0-3-2
Решение: х1=0,х2=0,х3=21,х4=4,х5=6,х6=10
f=0
Так как в индексной строке есть отрицательные элементы -решение не является оптимальным.
A1 вводим в базис вместо вектора А4
Базисный векторКоэф.лин. формы свектор св. член bb/a3 A12 A20 A30 A40 A50 A6
A30134 1/3 0 3 1 -2 0 0
A1340 1 0 0 1 0 0
А5066 0 1 0 0 1 0
A6022 0 1 0 -2 0 1
индексная строка fj-сj0 -2 0 3 0 0
Решение:х1=4,х2=0,х3=13,х4=0,х5=6,х6=2
f=12
Так как в индексной строке есть отрицательные элементы -решение не является оптимальным.
A2 вводим в базис вместо вектора А6
Базисный векторКоэф.лин. формы свектор св. член bb/a8 A17 A26 A30 A40 A50 A6
A3071 3/4 0 0 1 4 0 -3
A1344 1 0 0 1 0 0
А5042 0 0 0 2 1 -1
A222-1 0 1 0 -2 0 1
индексная строка fj-сj0 0 0 -1 0 2
Решение:x1=4, x2=2; x3=7; x4=0;x5=4;x6=0
f=12
Так как в индексной строке есть отрицательные элементы -решение не является оптимальным.
A4 вводим в базис вместо вектора А3
Базисный векторКоэф.лин. формы свектор св. член bb/a8 A17 A26 A30 A40 A50 A6
A401 3/40 0 1/41 0 - 3/4
A132 1/41 0 - 1/40 0 3/4
А50 1/20 0 - 1/20 1 1/4
A225 1/20 1 1/20 0 -1 1/2
индексная строка fj-сj0 0 1/40 0 1 1/4
Решение:x1=2,25, x2=5,5; x3=0; x4=1 3/4;x5=1/2;x6=0
f=17,75
В индексной строке нет отрицательных элементов, следовательно дальнейшее увеличение значения линейной формы невозможно мы получили оптимальную программу
Максимальная прибыль достигается при изготовлении первого вида продукции 2,25 у.е., а второго 5,5 у.е.
Так как нам не было задано условие целочисленности, такие значения допустимы, например в качестве условных едениц - тысячи тонн.
ЗАДАЧА 2Наити максимум функции F при заданных ограничениях
F = x1+2x2 ->max
3x1+x2 >=3(1)
3x1-x2 <=0(2)
x1-x2 >=3(3)
x1>=0(4)
x2>=0(5)
Решить графическим методом
Решение
1.Из условия знакоположительности - первой допустимой областью решения является первая четверть декартовой системы координат
2. Построим области допустимых значений, для этого построим линии для каждого из уравнений
3x1+x2 =3
3x1-x2 =0
x1-x2 =3
и линию для функции f
x1+2x2 =0
3. Наидем область допустимых значений
4. Как видно на графике области допустимых значений для ограничении (1),(2) и (3) не пересекаются, значит система не имеет допустимых решений. Ограничения противоречивы.
5.Для того чтобы система была решаема, она должна быть например
такойF = x1+2x2 ->max
3x1+x2 <=3
3x1-x2 <=0
x1-x2 <=3
x1>=0
x2>=0
Тогда область допустимых решений - треугольник АВС
И функция F достигает максимума в точке С (0;3) и F=6
ЗАДАЧА 3Имеются следующие данные об урожайности зерновых культур Y (в ц/га) количестве осадков Х1 (в см) выпавших в вегетационный период
i12345678910
Yi23242727323133353432
Xi25273035363839414245
Требуется :
а)Определить параметры уравнения регрессии;
б) определить коэффициент парной корреляции и проверить его статическую надежность
1. Количественные оценки связи между величинами случайного процесса устанавливает регрессионный анализ. Связи между переменными могут линейные и нелинейные. В простейшем случае значения Y выражаются в виде линейной зависимости :
Y =a + bX,
где a и b - коэффициенты регрессии.
Наиболее часто для расчетов коэффициентов применяют метод наименьших квадратов.
... модель задачи; б) поясните смысл целевой функции и ограничении Решение: а) Математическая модель 2x1+3x2 ...
... свойство pеализуется, возникает большое pазнообpазие моделей, а вместе с ним и пpоблема классификации моделей. II. Классификация моделей и виды моделиpования. ----------------------------------------------- В литеpатуpe, посвященной философским аспектам моделиpования пpедставлены pазличные классификационные пpизнаки, по котоpым выде- лены pазличные типы моделей. Остановимся на некотоpых из них. ...
в системах pаз цессов.Обсуждаются pазличные опpеделения понятия "инфоpмация", свя сами, pазличные интеpпpетации этого понятия (в физике, теp намике, химии и т.д.).Пpиводится обобщенная систематизация инфоpмационных пpоцессов (из меpение, экспеpиментальные исследования, пеpедача сообщений по каналам связи, моделиpование, умозаключение), об лучения.1.2. Введение в теоpию инфоpмацииВводится понятие ...
... и использования специалистов-пpофессионалов по анализу ваpиантов пpинимаемых pешений; pазpаботки и пpактического использования специальных методов анализа и сpавнения сложных альтеpнатив, возникающих в пpоцессе выбоpа. 3.ОБЩИЕ ПОДОХДЫ И РАЦИОHАЛЬHЫЕ ПРОЦЕДУРЫ В ПРОБЛЕМАХ ВЫБОРА В последние 20-30 лет появились подходы, pассматpиваемые многими как унивеpсальное сpедство pешения всех ...
0 комментариев