1. Розробка технічного завдання
Метою курсового проекту є розрахунок та визначення технічних параметрів схеми генератора трикутних напруг. Заданий діапазон періоду повтору імпульсу складає від 10мс до 10мкс, значення вихідної напруги лежить в діапазоні від 0,1В до 10В, значення опору навантаження складає 4Ом. Необхідно розрахувати значення кожного з елементів схеми генератора трикутних напруг та згідно розрахункам вибрати необхідні операційні підсилювачі, транзистори та діоди.
Конструктивні схеми генератори трикутної напруги використовуються в різних варіантах у залежності від області застосування.
Можливі області застосування генератора трикутних імпульсів надзвичайно різноманітні, можна виділити лише окремі сфери:
- промислова техніка виміру і регулювання;
- робототехніка;
- побутова техніка;
Застосування того чи іншого генератора в цих сферах визначається насамперед відношенням ефективності. При промисловому застосуванні визначальним фактором є погрішність, що при регулюванні процесів повинна складати < 1%, а для задач контролю - 2...3%. Для спеціальних застосувань в області робототехніки генератори можуть досягати навіть рівня 10...100 тис. Прилад повинний відтворювати вимірювані величини з погрішностями, що допускаються. При цьому слово «відтворення», еквівалентне в даному трактуванні слову «відображення», розуміється в самому широкому змісті: одержання на виході приладу величин, пропорційних вхідним величинам; формування заданих функцій від вхідних величин (квадратична і логарифмічна шкали й ін.); одержання похідних і інтегралів від вхідних величин; формування на виході слухових чи зорових образів, що відображають властивості вхідної інформації; формування керуючих сигналів, використовуваних для керування контролю; запам'ятовування і реєстрація вихідних сигналів.
Розроблений генератор трикутної напруги, формує вихідну напругу яка може використовуватись як вхідний сигнал для подальшого перетворення в необхідний сигнал чи імпульс. Даний сигнал подається в подальшому на вимірювальний прилад, за допомогою якого можна вимірювати час імпульсу та амплітуду будь – яких сигналів, але в залежності від діапазону. Вимірювальний сигнал, одержуваний від контрольованого об'єкта, передається у вимірювальний прилад у виді імпульсу або у виді енергії. Можна говорити про сигнали: первинних - безпосередньо характеризують контрольований процес; сприйманих чуттєвим елементом приладу; поданих у вимірюльну схему, і т.д. При передачі інформації від контрольованого об'єкта до покажчика приладу сигнали перетерплюють ряд змін за рівнем і спектром і перетворяться з одного виду енергії в іншій.
Та частина приладу, у якій первинний сигнал перетвориться, наприклад, в електричний, називається первинним перетворювачем. Часто цей перетворювач сполучається з чуттєвим елементом. Сигнали з виходу первинного перетворювача надходять на наступні перетворювачі вимірювального приладу.
Згідно ДСТУ 2681-94 „Метрологія. Терміни та визначення” та ДСТУ 2682-94 „ Метрологія. Метрологічне забезпечення ” даний розроблений генератор трикутних напруг - відноситься до первинних вимірювальних перетворювачів.
2. Розробка структурної схеми
2.1 Аналіз існуючих методів вимірювання та формування напруги
Генератор - це пристрій, що перетворює енергію джерела живлення в електричні коливання заданої форми, частоти і амплітуди. За формою імпульсів розрізняють генератори прямокутних, трикутних і синусоїдальних імпульсів, генератори пилоподібної напруги.
Пилоподібна напруга виходить в процесі заряду або розряду конденсатора. Напруга пилоподібної форми (лінійно мінілива напруга) характеризуються двома проміжками часу: часом робочого ходу, протягом якого напруга змінюється за лінійним законом, і часом зворотнього ходу, протягом якого напруга повертається до вихідного значення. Зазвичай закон зміни напруги під час зворотного ходу не істотний. У мультівібраторі напруга на частотно-задаючому конденсаторі змінюється від напруги спрацьовування до напруги відпускання за експоненціальним законом, однак буває необхідно отримати коливання трикутної форми з високою лінійністю.
У якості реалізації генератора трикутних напруги можна використовувати багато різних схем. Найбільш ефективними можна вважати схеми підключення на основі операційних підсилювачів, які можуть надають великий коефіцієнт підсилення, який у свою чергу забезпечує досить велику вихідну напругу. Також використання операційних підсилювачів генераторах дозволяє дозволяє забезпечити стабільної частоти від долі герц до сотні кілогерц. Як правило для реалізації генератора використовують схеми підключення під назвою «інтегратор» та «диференціатор», остання методика не є досить вдалою для забезпечення виходу трикутної напруги.
«Диференціатор» сигналу, побудований на операційному підсилювачі.
Являється підсилювачем на високих частотах (рисунок 2.1).
Рисунок 2.1 - Деференціатор
В такому підключенні здійснюється деференціювання вихідного сигналу.
, (1)
, (2)
, (3)
; (4)
В такому разі дане рівняння показує, що операційний підсилювач диференціює вхідний сигнал з постійною сталою .
«Інтегратор» - це метод який найкращим чином задовольняє умову реалізації виходу трикутних імпульсів, який ми і використаємо у даній задачі (рисунок 2.2).
Рисунок 2.1 – Інтегратор
Інтегратор являє собою самим простим пристроєм з реактивних елементів. Якщо на вхід інтегратора подати сигнал типу меандр , то на виході ми отримаємо трикутну напругу з сталою часу .
, (5)
За рахунок віртуального нуля
, , ,
Звідси:
; (6)
Оскільки на інтегратор необхідно подати прямокутну напругу, то для її генерації використаємо імпульсний генератор.
Імпульсні генератори – призначені для одержання сигналів, форма яких суттєво відрізняється від синусоїдальної. Такі сигнали характеризуються наявністю ділянок з відносно повільною зміною амплітуди і її стрибковою зміною. Імпульсні генератори мають внутрішній або зовнішній позитивний зворотній зв’язок.
Особливість роботи активних елементів: вони періодично, дуже швидко змінюють свій стан з одного крайнього положення в інше.
Основні режими імпульсних генераторів:
- автоколивальний – після збудження генерується послідовність імпульсів, характеристики яких визначаються лише параметрами елементів схеми;
- очікування – генератори імпульсів відбуваються лише за наявності зовнішнього сигналу запуску;
- синхронізації – частота вихідних імпульсів рівна чи кратна частоті зовнішнього синхронізуючого сигналу.
Формувачі імпульсів – пристрої, які виробляють імпульси необхідної тривалості з інших імпульсів чи з перепаду напруг (фронта).
Формувачі імпульсів бувають:
- на логічних елементах;
- з інтегруючим ланцюгом;
- з емітер ним повторювачем;
- на мікросхемах.
Для того щоб сформувати трикутну напругу на інтегратор необхідно подавати прямокутні імпульси. Це ми забезпечимо за допомогою автоколивального мультивібратора (рисунок 2.3).
Рисунок 2.3 – Автоколивальний мультивібратор
Для забезпечення підсилення амплітуди вихідного сигналу з автоколивального мультивібратора використаємо інвертуючий підсилювач (масштабний підсилювач)(рисунок 2.4).
Рисунок 2.4 – Інвертуючий підсилювач.
Тому за допомогою опорів R1 та R2 ми можемо підібрати необхідний коефіцієнт підсилення, який буде забезпечувати нормальну роботу інтегратора. Коефіцієнт передачі ідеального операційного підсилювача не залежить від параметрів операційного підсилювача, а визначається тільки зовнішніми елементами R1 та R2.
; (7)
Але в реальних умовах потрібно враховувати, що операційний підсилювач не ідельний тому накладає певні обмеження.
Для підсилення сигналу на вихід інтегратора використаємо каскад побудований по двотактній схемі на біполярних транзисторах різної провідності (комплементарна пара) (рисунок 2.5). Транзистори вихідного каскаду працюють в режимі класу В, з кутом відсічки .
Тобто,
; (8)
Рисунок 2.5 – Підсилювальний каскад на БТ
... і (К = 0.895) є достатній для НДР і оправдовує понесені витрати. ОХОРОНА ПРАЦІ КОРОТКА ХАРАКТЕРИСТИКА ОБ’ЄКТА ПРОЕКТУВАННЯ. Для виконання робіт по дослідженню впливу легування на параметри МОН-структур застосовуються прилади: · установка для вимірювання ВФХ АМЦ-1515 з напругою живлення 220 В; · самописець з напругою живлення 220 В; · ВЧ-генератор з напругою живлення 220 ...
... кОм. Резистори R8 та R10 служать для узгодження вхідних опорів попереднього пристрою з послідуючим. Обираємо С2-23 - 100 кОм. 5 Розробка алгоритму роботи комп’ютеризованої вимірювальної системи вимірювання залежності кутової швидкості від часу Розробку алгоритмічного та програмного забезпечення при вирішенні подібного типу задач вже можна починати при завершенні розробки фунціональних схем ...
... інь на базі одного поліноміального джерела. Складіть схеми пристроїв і перевірте їхню працездатність. Складіть схему для дослідження спектрального складу AM- і ЧМ-сигналів. Результати моделювання зіставте з розрахунковими по формулах (3.2) і (3.2а). 6. Як відомо, потужність у ланцюзі постійного струму визначається за формулою: W = VI = V2/R- Для створення моделі найпростішого ватметра, що ...
... наступний вигляд: Опис лабораторної установки Для виконання роботи необхідно використовувати універсальний стенд для вивчення законів розподілу випадкових процесів і електронний осцилограф. Передня панель стенду Стенд включає: - сім джерел незалежних випадкових сигналів (одного шумового з нормальним розподілом, одного трикутного і п'ять гармонійних). Дисперсія випадкових сигналів ...
0 комментариев