Міністерство освіти і науки України
Курсова робота
на тему
«Дослідження математичної моделі WiMax та розрахунок покриття на її основі»
Виконав:
Перевірив:
Львів - 2008
Зміст
1.Вступ.....................................................................................................................3
2.Дослідження імітаційної моделі WiMax...........................................................5
3.Теоретичний огляд розрахунку покриття WiMax………....………………..22
3.1 Величина радіусу комірки в залежності від виду модуляції…………..25
3.2 Залежність величини радіусу комірки від чутливості приймача………29
3.3 Залежність величини радіусу комірки від системного підсилення…….31
3.4 Вплив інтерференції на радіус комірки системи WiMax……………….35
3.5 Оцінка впливу зон Френеля на якість сигналу в межах траси WiMax….40
4.Проектування покриття комірки на основі імітаційної моделі......................43
5.Висновок..............................................................................................................46
6.Список літератури..............................................................................................47
1.Вступ
При переході до створення систем широкосмугового радіодоступу з інтеграцією послуг стало зрозуміло, що основні принципи, закладені в безпровідникові системи на попередніх етапах, потребують значної корекції. На сигнальному рівні першочергове значення дістало оптимальне використання спектрального ресурсу радіоканалу при будь-яких співвідношеннях „швидкість – завадозахищеність”. На рівні протоколів стало необхідним забезпечувати заданий рівень якості обслуговування(QoS) будь-якому абоненту мережі. З цією метою в 2004 році був розроблений стандарт IEEE 802.16-2004[164], що являє собою розраховану на введення в міських бездротових мережах (WirelessMAN) технологію без провідного широкосмугового доступу операторського класу. Часто використовується комерційна назва стандарту WiMax(Worldwide Interoperability for Microwave Access), що походить від назви міжнародної організації WiMax Forum, в яку входять ряд передових комунікаційних і напівпровідникових компаній.
Основне призначення даних мереж - це надання послуг абонентам по високошвидкісній і високоякісний безпровідній передачі даних, голосу і відео на відстані в декілька десятків кілометрів. У жовтні 2007 року International Telecommunication Union ( ITU-R) включив технологію WIMAX стандарту IEEE 802.16 в сімейство стандартів мобільного зв'язку 3G. У мережах WIMAX реалізовані найостанніші досягнення науки і техніки в області радіозв'язку, телекомунікацій і комп'ютерних мереж. Стандарт IEEE 802.16 визначає застосування:
· на фізичному рівні широкосмугового радіосигналу OFDM з множиною піднесучих;
· на канальному рівні використовується сучасний протокол множинного (багатостанційного) доступу Time Divion Multiply Access (TDMA) і Scalable OFDM Access (SOFDMA);
· на мережевому (транспортному) рівні в мережах WIMAX застосовується IP-протокол передачі даних, що широко використовуваний в більшості сучасних мережах передачі даних, зокрема, в мережі Інтернет.
В більшості випадків проектування мереж WiMax є досить складним і неоднозначним процесом. Розрахунок покриття відбувається на основі вимірювань рівня завад на місцевості, що потребує значних витрат коштів та часу. В даній роботі пропонується метод оцінки параметрів системи WiMax на основі математичної моделі, створеної в середовищі системи MatLab. Даний математичний апарат, в деякій мірі, може полегшити процес розрахунку покриття.
2.Дослідження імітаційної моделі WiMax
На фізичному рівні стандарту IEEE 802.16 передбачено три принципово різні методи передачі даних – метод модуляції одної несучої(SC, в діапазоні нижче 11 ГГц - SCa), метод модуляції за допомогою несучих OFDM(orthogonal frequency division multiplexing) і метод мультиплексування (множинного доступу) за допомогою ортогональних несучих OFDMA(orthogonal frequency division access). Даний математичний апарат побудований на основі методу WirelessMAN-OFDM, але може бути легко модифікований під будь-який з перелічених методів.
Режим OFDM – це метод модуляції потоку даних в одному частотному каналі(шириною 1-2МГц і більше) з центральною частотою fc. Ділення на канали – частотне. При модуляції даних під дією ортогональних несучих в частотному каналі виділяється N піднесучих так, щоб fk=fc+k*∆f, де k - ціле число із діапазону [-N/2,N/2]. Відстань між ортогональними несучими ∆f=1/Tb, де Tb – тривалість передачі даних. Крім даних в OFDM-символі передається захисний інтервал, що являється копією кінцевого фрагмента символу. Його тривалість може бути 1/4, 1/8, 1/16 та 1/32 від Tb.
Модуляція OFDM основана на двох основних принципах: розбиття одного каналу із змінними параметрами на паралельні гаусівські канали із різними співвідношеннями сигнал-шум і точне вимірювання характеристик каналу. У відповідності із першим принципом OFDM кожна несуча модулюється незалежно під дією квадратурної амплітудної модуляції. Загальний сигнал вираховується під дією зворотного швидкого перетворення Фур’є як
[1]
де Ck – комплексне представлення символу квадратурної модуляції. Комплексне представлення зручне, оскільки генерація радіосигналу проходить відповідно до виразу
Sk(t) = Ik*cos(2πfc)-Qksin(2πfc) [2],
де Ik і Qk – синфазна і квадратурна складова комплексного символу.
Для роботи алгоритмів ШПФ/ОШПФ зручно, щоб кількість точок відповідала 2^m. Тому число несучих вибирають рівними мінімальному числу Nfff = 2^m. В режимі OFDM стандарту IEEE 802.16 N=200, відповідно Nfff=256. З них 55 створюють захисний інтервал на границі частотного інтервалу каналу. Інші 200 – інформаційні.
У відповідності до другого принципу OFDM для точного визначення параметрів каналу необхідні так звані пілотні несучі частоти, метод модуляції і передаючий сигнал, що точно відомий всім станціям в мережі. В OFDM передбачено використання 8 пілотних частот(з індексами 88, 63, 38 та 13). Інші 192 несучі розбиті на 16 підканалів по 12 несучих в кожному. Ділення на підканали необхідне, оскільки в режимі WirelessMAN-OFDM передбачена можливість роботи не у всіх 16, а в 1, 2, 4 чи 8 підканалах – тобто закладені передумови OFDMA. Для цього кожний підканал і кожна група має свій індекс(від 0 до 31).
Тривалість корисної частини Tb OFDM-символу залежить від ширини смуги каналу BW та системної тактової частоти(частоти дискретизації) Fs. Fs=Nfff/Tb. Співвідношення Fs/BW=n нормується і в залежності від ширини смуги каналу приймає значення 86/75(BW кратне 1.5МГц), 144/125(BW кратне 1.25МГц), 316/275(BW кратне 2,75МГц), 57/50(BW кратне 2МГц) та 7/8(BW кратне 1,75МГц і у всіх інших випадках).
Для дослідження стандарту WiMax була використана фізико-математична імітаційна модель, будова якої збігається із представленою нижче блок-схемою:
Рис.1.1. Математична імітаційна модель стандарту IEEE 802.16 на основі методу WirelessMAN-OFDM
До її складу входять наступні функціональні блоки:
o Randomizer
Рис.1.2. Randomizer WiMax
ü PN Sequence Generator (Генератор псевдовипадкової шумоподібної послідовності) створює псевдовипадкову шумоподібну (PN) послідовність використовуючи лінійний регістр зсуву із зворотнім зв’язком(LFSR).
Рис.1.3. Блок-схема генератора псевдовипадкової шумоподібної послідовності.
LFSR для свого функціонування використовує просту конфігурацію генератора 15-розрядного регістра зсуву (SSRG чи Фібоначчі).
В якості поліному генератора використовується наступна послідовність: 1000000000000011 (Задаючий поліном c(x) = x^15+x^14+1). Дані значення призначенні для визначення зв’язків регістра зміщення. Для будь якого поліному у вигляді двійкового вектора перший і останній біти повинні бути одиницею. Початковий стан регістру зміщення представлений поліномом 100101010000000 (16x4A80).
Інформація обробляється кадрами по 280 біт.
ü Logical Operator XOR (Логічний оператор „виключне або”) виконує логічну операцію XOR між PN послідовністю та вхідним сигналом. В результаті на виході отримується 1 при непарній кількості одиниць на вході, тобто коли лише із одного входу поступає одиниця.
ü Zero Pad (Доповнювач нулями) доповнює або відкидає значення у стовпцях для досягання розміру 288 біт. Якщо довжини на вході та виході рівні, блок інформації просто передається. Доповнення та усікання відбувається в кінці сигналу.
o Block Encoder
Рис.1.4. Блочний кодер WiMax.
ü Bit to Integer Converter (Перетворювач біт – ціле десяткове число) перетворює групу із 8 бітів у вихідний сигнал у вигляді цілих чисел. Для прикладу, при вхідному сигналі [0000011100001101] на виході буде [7,13]. Із кадру довжиною 288 вхідних біт отримується послідовність із 36 цілих десяткових чисел.
ü Zero Pad to Code Word Size(Доповнювач нулями до розміру кодового слова) доповнює або відкидає значення у стовпцях для досягання розміру 239 біт. Доповнення відбувається на початку сигналу за допомогою додавання певної кількості нулів.
ü Integer-Input RS Encoder(Кодер Ріда-Соломона з цілочисельним значенням на виході) кодує 239 бітне кодове слово(K) кодом Ріда-Соломона із символами із поля Галуа GF(256), в результаті чого отримується повідомлення довжиною 255 біт(N). Тобто додається 16 перевірочних бітів. Даний код може виправляти (N-K)/2=8 символьних помилок(не лише 8 біт). Параметри вибираються так, щоб N-K було парним цілим числом. Тоді значення М визначається як найменше ціле число, що більше чи рівне log2(N+1) і рівне 8. Для конкретизації певних полів Галуа GF(2^M), які формують повідомлення, використовується примітивний многочлен 100011101 (X^8+X^4+X^3+X^2+1). В якості породжуючого поліному використовується поліном, сформований за допомогою команди genPoly = conv(genPoly, [1 gf(2,8)^idx]). Породжуючий поліном відповідає наступній формі:
g(x)= (x+A^b)(x+A^(b+1))(x+A^(b+2))...(x+A^(b+N-K-1)),
де А – примітивний елемент поля Галуа, через який визначається вхідний елемент, b – ціле число.
Для прикладу, нехай М = 3, N = 2^3-1 = 7, і K = 5. Тоді повідомлення представляється вектором довжиною 5 цілих символів, що лежать в межах від 0 до 7. Наступна фігура ілюструє можливий вхідний і вихідний сигнали:
Рис.1.5. Приклад обробки сигналу за допомогою кодера Ріда-Соломона
ü Selector(Прилад відбору) створює вихідний сигнал на основі відбору та перерозподілу вказаних елементів вхідного векторного сигналу за допомогою вектора елементів вхідного сигналу з індексами 240-243 та 204-239. На виході отримується 40 бітні повідомлення.
ü Integer to Bit Converter перетворює вектор вхідного сигналу із десяткових цілих чисел у рамку бітів по 8 біт з одного цілого числа. На виході створюється 320 бітний кадр.
o Convolutional Encoder(Згортковий кодер)
Рис.1.6.Згортковий кодер WiMax.
ü Convolutional Encoder кодує двійкову інформацію перед передачею через канал із шумом. На виході кодера створюється потік інформації, вдвічі більший за вхідний(згортковий код із швидкістю R=1/2). Протягом кодування k вхідних бітів кодуються у n вихідних бітів з подальшою швидкістю k/n потоку кодованих бітів. Кодер складається з регістру зсуву з k*L ланками (L – обмеження довжини коду), куди за один кодовий такт входять k символів, і n суматорів, пов’язаних із відповідними розрядами регістрів. Зв’язок j-го суматора по mod2 описується шляхом задання j-го породжуючого поліному gi=(gi0,gi1,…,gi(m-1)) , де і = 1...k, m- довжина регістра, а наявність коефіцієнтів відповідає наявності з’єднань. Породжуючи поліноми повністю визначають структуру кодера двійкового загорткового коду. Вихідні кодові символи можна представити у вигляді згортки послідовності інформаційних символів і породжуючи поліномів коду, що задають лінійні рекурсивні правила кодування. В перегляді D5 версії IEEE WIMAX 802.16 використовується кодер з обмеженням довжини 7 та породжуючими поліномами g0 = 171oct і g1 = 133oct, що в даній імітаційній моделі задається командою poly2trellis(7 [171 133]). Його будова показана на рис.1.7, де g0 і g1- породжуючі поліноми, а D-ланка затримки. Для програмної побудови кодера першим кроком є представлення вхідної послідовності як поліному. Згортковий кодер представляється у вигляді:
g0 = 1 + D + D2 + D3 + D6
g1 = 1 + D2 + D3 + D5 + D6
Далі згортковий кодер помножує породжуючий поліном на вхідний потік бітів:
A(x) = g0(x) * I(x) = a b c … g
B(x) = g1(x) * I(x) = P Q R … V
Чергуючи обидва виходи згорткового кодера отримаємо E(x) = aPbQcR … gV, що можу бути записано, як:
E(x) = (a0 b0 c0 … g0) + (0P0Q0R … 0V) = A(x2) + x*B(x2)
Тому,
E(x) = A(x2) + x * B(x2) , а A(x2) = g0(x2) * I(x2) і B(x2) = g1(x2) * I(x2)
Далі
E(x) = g0(x2) * I(x2) + x * g1(x2) * I(x2) = I(x2) * (g0(x2) + x * g1(x2)) = I(x2) * G(x), де G(x) = g0(x2) + x * g1(x2)
G(x) = 1 + x2 + x4 + x6 + x12 + x * (1 + x4 + x6 + x10 + x13) = 1 + x + x2 + x4 + x5 + x6 + x7 + x11 + x12 + x13
Рис.1.7. Блок-схема загорткового кодера WiMax.
ü Runcture(виколювач) створює вихідний сигнал на основі видалення певних бітів із вхідної послідовності із збереженням усіх інших біт. В даному випадку виколювання відбувається за допомогою функції reshape([1 0 1 0 1;1 1 0 1 0], 10, 1) і отримується 384 вихідні біти.
Для прикладу при виколюванні вектора виколювача [1;0;1;1;1;0] буде видалятися 2 та 6 елементи з вхідної 6-символьної послідовності:
Рис.1.8. Приклад виколювання бітів.
o Interleaver(Перемішувач) реорганізовує порядок вхідних елементів без проведення повторення чи видалення елементів вхідного вектора.
o
Мал.1.9. Перемішувач.
Для прикладу, якщо вхідний вектор [40;32;59;1], а параметр „елементи” перемішувача [4,1,3,2], то буде побудований вихідний вектор [1;40;59;32].
o Modulator
Мал.1.10. Модулятор QPSK.
ü Bit to Integer Converter1(Перетворювач біт – ціле десяткове число) перетворює групу із 2 бітів у вихідний сигнал у вигляді цілих чисел. Із кадру довжиною 384 вхідних біт отримується послідовність із 192 цілі десяткові числа.
ü General QAM Modulator Baseband(QAM модулятор) модулює вхідний сигнал використовуючи метод квадратурної фазової модуляції(QPSK), що заміняє 2бітову послідовність за допомогою одного символу із відповідною синфазною(I) і квадратурною складовою(Q) з векторних діаграм Грея.
Рис.1.11. Векторна діаграма Грея для QPSK.
o Normalize(Нормалізатор) розкладає комплексний сигнал Z після модуляції на real(Z) - i*imag(Z) та перемножує на величину 1/√2:
Рис.1.12. Нормалізатор.
o OFDM Symbols(Формувач OFDM повідомлення) проводить OFDM модуляцію потоку даних в одному частотному каналі. Для цього елементи вхідного потоку інтерпретуються як 192 несучі, що групується по 12 та передається 16 групами на вихідні порти. До них додаються дві групи(27 і 28 несучих), що утворюють захисний інтервал на границі частотного діапазону. В результаті об’єднання груп утворюється вихідний сигнал, над яким проходиться зворотнє швидке перетворення Фур’є та додається циклічний префікс (коефіцієнти 193-256 та 1-256).Утворений сигнал із 320 символів передається через канал зв’язку.
Рис.1.13. OFDM-модулятор.
o OFDM Data(відновлювач даних з OFDM - повідомлення) отримує сигнал після проходження ним каналу зв’язку. Він відкидає циклічний префікс, проводить швидке перетворення Фур’є, об’єднує інформацію в кадри по 256символів, видаляє елементи із 29 до 128 та від 130 до 229. На виході отримується кадр із 192 символів.
Рис.1.14. OFDM-демодулятор.
o Denormalize(Денормалізатор) являється точною копією блока Normalize.
o Demodulator виконує QPSK демодуляцію та перетворює цілі числа до біт з відповідністю 1 число до 2-х біт. На виході отримується рамка із 384 бітів.
o
Рис.1.13. Демодулятор QPSK.
o Deinterleaver(зворотній перемішувач) відновлює початковий порядок бітів, аналогічний послідовності до обробки перемішувачем на передаючій стороні.
Рис.1.14. Зворотній перемішувач.
Viterbi Decoder
Рис.1.15. Декодер Вітербі
ü Unipolar to Bipolar Converter(перетворювач однополярного коду до двополярного) перетворює вхідний однополярний сигнал до двополярного вихідного сигналу. Так вхідний сигнал містить значення одиниць та нулів, в той час як вихідний 1 та -1.
ü Insert Zero(Блок додавання нулів) будує вихідний вектор на основі додавання нулів до вхідної послідовності для розширення її із 384 до 640 бітів. Відбувається вставка 4 нулів на кожні 6 символів згідно алгоритму reshape([1 0 1 0 1;1 1 0 1 0], 10, 1). Для прикладу, додавання нулів із початковим вектором [1,0,1,1,1,0] цього блоку буде виглядати наступним чином:
Рис.1.16. Приклад роботи блоку додавання нулів.
ü Viterbi Decoder(Декодер Вітербі) використовує алгоритм Вітербі для декодування кодованої вхідної інформації. Ідея алгоритму Вітербі полягає в тому, що в декодері відтворюють всі можливі шляхи послідовних змін стану сигналу, порівнюючи при цьому кодові символи із прийнятими аналогами із каналу зв’язку, і на основі аналізу помилок між прийнятими і потрібними символами вибирають оптимальний шлях. Декодування по методу Вітербі являє собою алгоритм пошуку найкращого, максимально правдоподібного шляху на графі – решіточній діаграмі коду. До складу декодеру Вітербі входять три основні блоки:
· гілкового метричного обчислення(BMC);
· додавання-порівняння і відбору(FCS);
· зворотного декодування (TBD).
Рис.1.17. Блок-схема декодера Вітербі.
Як приклад, побудова BMC для 1/2 швидкості та nsdec = 3 буде наступною:
Рис.1.18. Будова блоку гілкового метричного обчислення(BMC).
ACS складову в загальному вигляді відображає наступний рисунок:
Рис.1.19. Будова блоку додавання-порівняння і відбору(FCS).
o Block Decoder
Рис.1.20. Блочний декодер.
ü Bit to Integer Converter2(Перетворювач біт – ціле десяткове число2) перетворює послідовність з 8 бітів в одне ціле десяткове число.
ü Selector1(Прилад відбору1) відбирає елементи з порядковим номером від 2 до 40, а перший елемент додається в кінець послідовності.
ü Zero Pad to Code Word Size1(Доповнювач нулями до розміру кодового слова1) збільшує розмір повідомлення з 40 до 239 додаючи на початок повідомлення необхідну кількість нулів.
ü Zero Pad to Code Word Size2(Доповнювач нулями до розміру кодового слова2) збільшує розмір повідомлення з 239 біт до 255 додаючи необхідну кількість нулів у кінці повідомлення.
ü Integer-Output RS Decoder(Декодер Ріда-Соломона з цілочисельним значенням на виході) відновлює повідомлення із кодового слова Ріда-Соломона. Для належного декодування параметри даного блока повинні збігатися із параметрами кодера. В результаті декодування отримується 239бітна послідовність.
ü Selector2(Прилад відбору2) вибирає біти з індексами 204-239 та будує з них вихідну послідовність.
ü Integer to Bit Converter3(Перетворювач ціле десяткове число – біт3) перетворює ціле число у послідовність із 8 бітів.
o De-Randomizer відбирає перші 280 біт із 288бітного вхідного вектора та проводить логічну операцію XOR між отриманою послідовністю після селектора та псевдовипадковою послідовністю, в результаті чого отримується початковий сигнал.
Рис.1.21. De-Randomizer.
3.Теоретичний огляд розрахунку покриття WiMax
Розрахунок покриття WiMax – досить неоднозначний процес, що залежить від великої кількості параметрів середовища передачі та тих, що закладені в будову системи WiMax. Розрізняють дві стратегії побудови мережевої інфраструктури WIMAX.
Перша стратегія орієнтована на отримання максимальної щільності потоку даних на заданій території. Дана стратегія застосовується в великих містах з високою щільністю населення з розвиненою проводовою мережевою інфраструктурою. Основною метою є забезпечення конкурентності з проводовим широкосмуговим доступом DSL і надання мультимедійних послуг.
Друга стратегія, застосовна в умовах відсутності або низького рівня конкуренції з боку дротяних систем, припускає таке розміщення базових станцій, яке забезпечує отримання максимальної зони покриття із забезпеченням заданої щільності потоку даних. Дана стратегія застосовна в сільських районах, а також в містах і обласних центрах з низьким розвитком дротяної інфраструктури, що характерний для більшості регіонів України. Реалізація даної стратегії дозволяє отримувати щільність потоку даних 1-6 Mbps/кв.км. Мета реалізації даної стратегії полягає в забезпеченні потрібної для послуг швидкості, що надаються оператором, передачі на максимальних територіях.
Реалізація стратегії максимізації щільності потоку даних на дозволяє при обмеженому частотному ресурсі отримати конкурентну з DSL густину потоку даних (20-40 Mbps/ кв.км) при високій щільності розміщення базових станцій (БС) Base Spacing,що рівна 1-2 км. При цьому TDD БС мають можливість повторного використання частот на одній БС і можливості collocation БС - синхронізації роботи БС з метою виключення взаємних перешкод. В умовах обмеженості частотного ресурсу це дозволяє TDD БС досягати великих значень щільності потоку даних в порівнянні з продуктивнішим устаткуванням FDD, що вимагає для своєї роботи значного частотного ресурсу.
Реалізація стратегії максимізації площі територій, що покриваються послугою, ускладнюється відносно високими втратами потужності радіосигналу при розповсюдженні радіохвиль в діапазоні порядку частот 5 Ггц. Ці втрати на частоті 5 Ггц декілька вище за аналогічні втрати на нижчих частотах 2.5 Ггц і 3.5 Ггц. Проте, застосування стратегії максимізації території, що покривається, на частоті 5 Ггц для фіксованого безпровідного доступу достатньо ефективно. Річ у тому, що фіксований доступ припускає оснащення абонентських терміналів зовнішніми антенами. У мережах WIMAX це можуть бути антени для використання усередині приміщень, якими оснащуються (self-installable) абонентські термінали, що інсталюються абонентами самостійно, і зовнішні антени, що встановлюються поза приміщеннями, вимагають професійної інсталяції оператором зв'язку. По оцінках фахівців, більшість абонентських терміналів, що працюють в мережах WIMAX фіксованого доступу в діапазоні частот 5 Ггц, будуть оснащені зовнішніми антенами. При цьому зовнішні антени 5 Ггц мають в середньому на 5-7 dbi більше посилення в порівнянні з антенами аналогічних розмірів діапазону 2.5 і 3.5 Ггц. Вище посилення зовнішніх абонентських антен якраз і компенсує підвищені втрати при розповсюдженні радіосигналу.
Таким чином, застосування устаткування стандарту IEEE 802.16-2004 дозволяє покривати послугою широкосмугового доступу обширні території з мінімумом витрат, тобто ефективно реалізовувати стратегію максимізації території, що покривається. При цьому важливою особливістю WIMAX мереж є відносно невеликий радіус обслуговування self-installable абонентських терміналів. Втрати потужності при розповсюдженні радіосигналу в умовах міської забудови поза прямою видимістю в діапазоні 5 Ггц набагато більш значні чим, наприклад, в діапазоні частот 2.5 Ггц. Ці підвищені втрати неможливо компенсувати застосуванням в self-installable абонентських терміналах потужних антен. Тому максимальна дальність обслуговування таких абонентів поза прямою видимістю базової станції значно менша, ніж на нижчих частотах, і не перевищує 1 км. Таким чином, в мережах WIMAX діапазону частот 5 Ггц self-installable абонентські термінали практично застосовуватися не будуть. Установка абонентських outdoor терміналів із зовнішніми направленими антенами (зокрема з інтегрованими в корпус терміналу антенами) вимагає професійних навиків і зазвичай проводиться силами оператора зв'язку. Установка абонентського терміналу не вимагає наявності прямої видимості на базову станцію за умови дотримання двох умов:
1) наявність потрібного для використовуваної модуляції відношення SNR сигнал/шум; 2) необхідного перевищення (fade margin 6-12 db) рівнем корисного сигналу відповідного використовуваній модуляції порогу чутливості. Зазвичай дані умови виконуються для абонентських терміналів, оснащених зовнішньою антеною або інтегрованою антеною з високим посиленням, на дальності не більше 3-5 км. від базової станції. На вищих дальностях при установці абонентських терміналів потрібно забезпечити пряму видимість (без обмежень на ступінь закриття зони Френеля).
Далі описуються методи розрахунку радіусу комірки на основі стратегії максимізації площі територій, оскільки саме вона характерна для території України.
Максимальний радіус комірки WiMax , як і в будь-яких радіосистемах, визначається на основі попередньо заданої BER(ймовірності бітової помилки) або SINR (Signal to interference plus noise ratio). Збільшення радіусу комірки спричиняє і збільшення BER у її межах. Відповідно, можна визначити максимальний радіус комірки із допустимим значенням ймовірності помилки у межах комірки. Для систем WIMAX стандарт IEEE 802.16 визначає максимально допустимий рівень бітової помилки рівний Ber=10e-6 (відсоток прийому помилкових біт інформації не більше 0,005%) або SINR >= 21 db. При даному рівні помилок система WIMAX здатна підтримувати з необхідною якістю найкритичніший до помилок сервіс цифрової телефонії (сервіс TDM).
... значних результатів. За підсумками роботи за рік показники якості значно краще, ніж встановлені для них нормативні рівні, як українські, так і міжнародні. Розділ 3. Шляхи вдосконалення управління якістю послуг Інтернет зв’язку в компанії «People.net» 3.1 Вдосконалення системи стандартів якості послуг Інтернет зв’язку Сьогодні в Україні відмічено масовий рух із впровадження на підприє ...
0 комментариев