2 Вплив форми профілю на вирішення основних гідродинамічних задач

 

Окрім припущень та умов до хвильової поверхні увага також звертається і на форму профілю, який рухається по поверхні. Так, найчастіше для спрощення задачі використовується плоска пластина. Більш загальний випадок глісування можна отримати, якщо пластину замінити дугою з невеликою випуклістю або опуклістю. Що стосується тривимірних задач, то тут розглядаються більш складні форми глісуючої поверхні – у вигляді тривимірних фігур – конусоподібні, шарові, призматичні та ін.

Робота [10] присвячена випадку круглої глісуючої поверхні. Крила з дійсно круглою формою глісуючої поверхні не є зогальною задачею в аеронавтиці або гідродинаміці. В роботі увага акцентується головним чином на аналітичних та числових результатах для тонких, непроникних поверхонь круглої форми.

Більше уваги приділяється дослідженням ефекту наявності випуклості на днищі судна. Тулін (1957) показав, що головні особливості нев’язкого потоку поблизу тонкої, плоскої поверхні при великій швидкості гарно апроксимуються теорією тонкого тіла для отримання кінцевих швидкостей по ватерлініям. Окрім того, він показав, що наявність килеподібної випуклості на пластині приводить до бризкового опору, а нев’язкий опір плоских, тонких глісуючих пластин складається з індуктивного опору та бризкового опору, які рівні між собою при відсутності випуклості. Тулін представив результати, які показали, що бризковий опір є функцією форми судна та продольної випуклості, кривизни та куту поширення. Його параметричні оцінки вказали, що тупі носові частини з кормою з великою кривизною випуклості дадуть найменш нев’язкий опір. Але неврахований Туліном опір тертя дав нереалістичне зображення відносного впливу бокових вертикальних форм на повний опір. [11]

Більш складна задача, пов’язана з дослідженням гідродинамічних параметрів глісуючого корпусу при наявності випуклості на днищі, розглянута в [12]. Корпус, в цій роботі, представляв собою призматичну поверхню.

Хоча робота Туліна ігнорується емпіриками та теоретиками, на її основі побудований метод Воруса для вивчення теорії для вертикального руху симетричних, двовимірних клинів з кривими та прямим сторонами. Головна відмінність роботи Воруса від роботи Туліна полягала у врахуванні точки наведеної поперечної нормалі швидкості на корпус і заміни сингулярної поведінки бризка складною процедурою розкладання. Ворус таким чином отримав інтегральне рівняння другого порядку. Модель Воруса ускладнена. [13]

Багато інших вчених займалися задачами глісування при наявності випуклості. Наприклад – Маріо (1951) проаналізував глісування в довільних числах Фруда. Камбербач (1958) також вивів формули для двовимірних пластин при великих, але кінцевих числах Фруда. Задача усталеного в’язкого опору, який встановлений при постійній довжині хорди була вирішена Ву (1972). В 1967 році Маріо вирішив дану задачу при врахуванні гравітаційності. Він також враховував бризковий опір, але знову оцінював тільки поверхневі шари. [12]


3 Комп’ютерні методи визначення гідродинамічних характеристик глісуючого комплексу

Передбачення створених хвилею рухів і хвильових навантажень – одне з найважливіших питань при конструюванні судна. Рухи з більшою амплітудою створюють задачу про безпечне пересування суден в воді, у той час екстремальне навантаження може привести до пошкодження структури. Загальне застосування методу малих збурень - один підхід до такої нелінійної задачі, де нелінійні ефекти обчислюються за допомогою збереження квадратних позначень у граничних умовах. Однак, в цьому підході залишаються лінійні припущення.

Загальні методи для передбачення характеристик глісуючго корпусу включають емпіричні рівняння і дослідне випробування. Емпіричні рівняння часто можна застосувати тільки до подібних типів корпуса в малому діапазоні параметрів, у той час як випробування моделі часто дуже дорого, особливо для малого судна.

Зараз зростають вимоги до розвитку методу розрахунку, який орієнтується, в принципі, на широкі можливості. Сучасний розвиток в комп’ютерних характеристиках і чисельних методах дозволили вирішити нелінійні задачі набагато легше, ніж раніше.

Об’єднаний метод Ейлер Лагранжа (МЕЛ) вперше був введений Лонгетом-Хігінсом і Скелетом (1976), для моделювання деформації поверхневих хвиль. Метод МЕЛ використовує підхід повністю нелінійної області часу і застосовується до різноманітних нелінійних задач. Метод моделювання для руху пливучого корпуса у хвилях був розроблений Вінжі і Бревігом (1981), Квінті та ін. (1990), Сеном (1993) і Танізава (1995). Двовимірні взаємодії пливучих тіл з вільною поверхнею можна обчислити раціонально, використовуючи повністю нелінійний підхід. З іншого боку, підхід нелінійної часової області був поширений на тривимірну задачу хвилі судна і вивчений багатьма дослідниками. В принципі, обчислені результати повністю нелінійного підходу були отримані Маскевом (1992), Беком та ін. (1994), Скорпіон та ін. (1996) і Шіракура та ін. (2000). Хоча їх формулювання теоретично точні, чисельно стійкі рішення не можна отримати в деяких випадках обчислення.

Для практичного використання потрібно більше досліджень і числових вимірювань. Числовий аналіз тривимірним методом - інший підхід до нелінійної задачі, який можна розглянути як метод малих збурень. Тобто, лінійна або слабо нелінійна умова вільної поверхні для невстановленої області хвилі представлені у більшості випадків, у той час як миттєва геометрія корпусу враховується в обчисленні в умові поверхні корпусу. Оскільки з цими припущеннями очікуються більш стійкі рішення, були представленні успішні результати обчислення рухів судна (наприклад, Лін і Юу 1990, Накос і ін. 1993, Буннік і Германс 1998, Колагросі і ін. 1999, Ясукава 2000 і Катаока і ін. 2001).

Теорія високошвидкісної смуги (ТВШС), вперше представлена Чапманом (1976), застосовувалась багатьма дослідниками, наприклад, Адачі і Охмасу (1980), Енг і Кім (1981), Охмасу і Фалтінсен (1990), Фалтінсен і Жао (l991). Цей метод часто називають "2.3 D " або "2D+T" теорія, у якій задача тривимірної вільної поверхні корабельної хвилі зведена до двовимірної задачі, яка може бути вирішена послідовно в часовій області. Адачі і Масуа (1996) запропонували метод функції Гріна в 2.5D теорії, де було враховано додаткове позначення, яке відповідає поперечним хвилям у задачі усталеного хвилеутворення. Кашігаві (1995) розробив розширену об’єднану теорію, у якій немає обмеження на порядок поступової швидкості чи частоти коливання. Хоча ці два методи, використовуючи двовимірний підхід - дуже практичні з раціональних, теоретичних і обчислювальних точок зору, обидва методи сумісні з лінійними припущеннями.

З’єднання вищезгаданих двох методів приводить до підходу нелінійної часової області, використовуючи ТВШС, яка є нелінійною версією 2.5D теорії. Взаємодія в низу за течією у тривимірному потоці навколо судна пояснюється ефектом запам’ятовування вільної поверхні. Оскільки задачі граничних умов (крайові задачі) можуть бути описані тим же самим формулюванням у випадках і усталеного і неусталеного потоку навколо судна, потенціали швидкості можна вважати однаковими. Крім того, граничні умови повністю нелінійні в структурі теорії тонкого судна, і в обчисленні можна врахувати геометричні, гідростатичні і гідродинамічні нелінійні характеристики. Калісал і Чан (1989) та Тулін і Ву (1996) розробили чисельні моделювання розбіжних головних хвиль. Фонтайн і Квінт (1997) також показали обчислення головних хвиль і запропонували можливість його застосування для прогнозування удару навантаження. Маруо і Сонг (1994) продемонстрували, що головні хвилі розбиваються при русі високошвидкісного судна, яке застосовувалося для аналізу змочення палуби. Обчислення гідродинамічної сили в задачі усталеного коливання були представлені Кіхара і Найто (1998). Крім того, вони досліджували прогнозування додаткового опору моделі Віглея в регулярних головних хвилях. З подальшим розвитком в цій області, були активно вивчені 2D+T методи разом з процедурою обчислювальної гідродинаміки (CFD). Тулін і Ландріні (2000) представили аналіз розбивання хвиль, використовуючи згладжену частину гідродинаміки (SPH), і Андрілон та Алесандріні (2002) показали результати обчислення, використовуючи обчислювальний пристрій Навье-Стокса з об’ємно-кінцевим (VOF) методом. Ці методи дозволяють моделювати гідродинамічні рухи, включаючи комплексні фази розсіяння хвиль, типу повторного сплеску, формування сплеску вверх і завихреності. Для практичного використання в технічних задач, застосування нових CFD процедур, описаних вище для обчислення гідродинамічної сили, є перспективною задачею. [14]

В роботі [15] представлено результати вивчення використання CFD для оцінки характеристик високошвидкісного глісуючого судна, яке рухається зі сталою швидкість по спокійній воді. Для вивчення використовується неструктурований, багатофазний, кінцевий об’ємний код, який використовує метод об’єму рідини (VOF). Характеристика високошвидкісного судна глибоко пов’язана з орієнтацією корпуса у швидкості, що не може бути відома апріорно. Змінюється підйом глісуючих корпусів і кути атаки, як реакція на область тиску, створену потоком. Для врахування цих змін у положенні корпуса метод моделювання повинен гарантувати, що в підйомі була досягнута динамічна рівновага в момент обробки. Це досягнуто за допомогою ітераційної схеми, у якій область потоку була вирішена для дискретних орієнтацій корпуса. Робота складається з набору експериментальних випробувань моделі, для отримання даних, з якими чисельні результати порівнюються. Для цього було виконано три набори моделювань. Перший набір виконувався для прямого порівняння числових результатів з експериментальними. Другий набір моделювань виконаний для задоволеної умови рівноваги. Третій набір – відповідає стану рівноваги при підйомі та обробці. [15]



Информация о работе «Гідродинамічне глісування»
Раздел: Физика
Количество знаков с пробелами: 77464
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
114867
2
20

... концентрацій (від 20 до 40 %). Це пояснюється прагненням наблизити концентрати за вмістом екстрактивних речовин до аптечних водних витяжок. Технологія одержання рідких концентратів передбачає такі ж стадії, що і при одержанні рідких екстрактів: одержання витяжки з лікарської рослинної сировини, очищення витяжки, стандартизація. Для одержання витяжки найчастіше використовують методи, в яких не ...

Скачать
100813
0
0

... тологів та активістів поміркованого екологічного руху, які переконані в тому, що для розв’язання проблем збереження довкілля та поліпшення якості життя людини потрібно насамперед постійно впливати на процес прийняття рішень у сфері екологічної політики. Як правило, сутність такого впливу зводять до обґрунтування необхідності збільшення кількості законів, що контролюють рівні забруднення, перегляду ...

Скачать
87956
1
0

... ів в Чернігівській області Тваринний світ характеризується ще більш багатим видовим складом, який становить близько 41% від загальноукраїнського. Так, на Чернігівщині поширені ссавці до 48 видів. Таблиця 1 Найбільш поширені види Чернігівської області Ряд Родина Вид Ряд Комахоїдні — Insectivora. Родина Їжакові - Erinaceidae Їжак звичайний (Erinaceus europaeus) Родина ...

Скачать
36171
1
0

... . Чисельні ізоферменти СУР450 відрізняються г Послідовністю амінокислот, специфічністю по відношенню до субстратів, чутливістю до індукторів та інгібіторів, наявністю генетичного поліморфізму. З чим пов'язано таке різнобарв'я цитохромів Р450? Існує гіпотеза, що еволюційно ці гени виникли в процесі взаємодії тварин з рослинами. Для захисту від поїдання тваринами рослини почали виробляти стероїдні ...

0 комментариев


Наверх