2. Экспериментальная часть
Задание 1. Подготовка монохроматора к работе
1. Осмотрите монохроматор, проверьте соответствие комплекта установки рисунку на планшете, который прилагается к прибору. Прочтите имеющиеся на приборах информационные таблички. Пользуясь рисунком на планшете, уясните назначение узлов и ручек управления монохроматором. Рассмотрите блок питания, ртутную и неоновую лампы.
2. На блоке питания включите тумблер "Сеть". На основании монохроматора расположены тумблеры включения освещения шкал и окулярного визира.
3. В поле зрения окуляра наблюдается окулярный указатель - визир 11, вертикальное острие иглы. Вращая обечайку окуляра, сделайте визир максимально резким. Поворачивая диск со светофильтрами наверху окуляра, можно менять цвет подсветки визира. Следует использовать цвет, ближайший к цвету наблюдаемого участка спектра. Интенсивность подсветки визира подбирается регулятором, расположенным рядом с его выключателем.
4. Изучите шкалу отсчетного барабана. Деления на барабане нанесены в градусных единицах j° (2°/дел). Убедитесь, что при прохождении всего барабана, отсчетный флажок с риской не сходит с направляющей канавки барабана (при вращении барабана флажок желательно придерживать пальцем). Отсчет делений ведется по специальной риске с точкой на флажке.
5. Установите на рельс ртутную лампу вплотную к входной щели монохроматора. Питание лампы осуществляется от специального блока.
Внимание! Ртутная лампа наряду с видимым светом излучает ультрафиолет, вредный для глаз. Во избежание ожогов сетчатки глаза, лампа помещена в непрозрачный футляр с окошком, направленным в сторону щели монохроматора.
6. Раскройте входную щель на достаточно большую ширину (ручка микрометрического винта 4). Рукоятку затвора поставьте в положение "Откр.".
7. Приблизив глаз к окуляру монохроматора, вращением барабана 8 пройдите вначале весь спектр в любом направлении. В поле зрения должны наблюдаться вертикальные полосы от красного до фиолетового цветов.
8. Вращая барабан 8, найдите в спектре и установите в поле зрения окуляра яркую двойную желтую линию. Постепенно уменьшая ширину щели и пользуясь ручкой фокусировки 6, добейтесь, чтобы линии стали максимально контрастными – тонкими и яркими. «Желтый дублет» ртути должен четко различаться.
9. При просмотре всего спектра ртути по краям барабана должен оставаться некоторый запас делений.
Задание 2. Градуировка монохроматора
Цель: Градуировка любого измерительного прибора - это установление однозначного соответствия между значениями наблюдаемой физической величины и показаниями прибора. В частности, при градуировке монохроматора, необходимо установить зависимость между длинами волн линий, наблюдаемых в хорошо изученных (эталонных) спектрах и показаниями барабана 8: l= f(j). Эта зависимость должна быть отображена в виде градуировочного графика. В дальнейшем градировочный график может быть использован для определения длин волн в неизвестных спектрах.
Градуировка выполняется по линейчатым спектрам газов, длины волн спектральных линий которых уже известны. В настоящей работе монохроматор градуируется по спектрам паров ртути и инертного газа неона.
В таблице 1 указаны номер, цвет, длины волн для всех линий в спектре ртути в диапазоне видимого света от 400 нм до 710 нм. Этот спектр излучается в низковольтном дуговом разряде однозарядными ионами ртути.
Для получения полного спектра ртути необходимо очень хорошо настроить прибор и использовать качественную ртутно-кварцевую лампу. В студенческой лаборатории удается наблюдать наиболее яркие линии этого спектра (в таблице выделены жирным шрифтом, яркость линий дана в специальных единицах).
Обычно хорошо наблюдается одна из оранжевых линий, две близко расположенные желтые линии (дублет), одна яркая зеленая, сине-зеленая (голубая) и синяя яркая. Красные линии спектра и фиолетовую (405 нм), несмотря на относительную яркость последней, наблюдать визуально сложно, так как их цвета лежат на границах цветового восприятия человеческого глаза. Но при достаточно хорошей настройке прибора их все же удается наблюдать. Надо понимать, что цвет – характеристика достаточно субъективная и то, что один наблюдатель назовет красным (или синим), другой может назвать оранжевым (или фиолетовым).
Таблица 1
№ п/п | Цвет линии | l, нм | Яркость
| № п/п | Цвет линии | l, нм | Яркость
|
1 | Красная | 709 | 20 | 18 | Зеленая | 529 | 2 |
2 | - “ - | 708 | 25 | 19 | - “ - | 521 | 2 |
3 | - “ - | 691 | 25 | 20 | - “ - | 513 | 2 |
4 | - “ - | 671 | 16 | 21 | - “ - | 512 | 4 |
5 | Оранжевая |
| 3 | 22 | - “ - | 510 | 2 |
6 | - “ - | 612 | 2 | 23 | - “ - | 502 | 4 |
7 | - “ - | 607 | 2 | 24 | - “ - | 499 | 3 |
8 | Желтая | 587 | 2 | 25 | Сине-зеленая | 492 | 10 |
9 | - “ - | 585 | 6 | 26 | -“ - | 489 | 3 |
10 | - “ - | 580 | 14 | 27 | - “ - | 482 | 3 |
11 | Яркий желтый дублет | 579 | 100 | 28 | Синяя яркая | 436 | 400 |
12 | 577 | 24 | 29 | - “ - | 435 | 40 | |
13 | - “ - | 567 | 16 | 30 | - “ - | 434 | 4 |
14 | Зеленая | 555 | 3 | 31 | - “ - | 434 | 30 |
15 | Зеленая яркая | 546 | 320 | 32 | Фиолетовая | 411 | 4 |
16 | - “ - | 538 | 3 | 33 | - “ - | 408 | 12 |
17 | - “ - | 535 | 6 | 34 | - “ - | 405 | 180 |
1. Начиная с фиолетового конца спектра, вращая барабан «на себя», поставьте напротив визира первую наблюдаемую линию спектра.
2. В таблицу 1 отчета занесите значение длины волны линии и отсчет по барабану.
3. Продолжайте градуировку. Отождествите наиболее характерные линии: яркую синюю, очень яркую зеленую, одну из желтого дублета и т. д. Возможно, удастся наблюдать крайнюю фиолетовую и одну из красных линий.
4. Оцените «на глазок» яркость линий по условной десятибалльной шкале. Самой яркой линии присваивается знак 10, самой слабой – 1.
5. После завершения измерений ртутного спектра выключите ртутную лампу. Ее повторное включение возможно не ранее чем через 5-10 минут.
6. Замените ртутную лампу на неоновую, питание которой осуществляется напряжением
... индустрии. С помощью спектрального анализа определяют химический состав руд и минералов. Состав сложных, главным образом органических, смесей анализируется по их молекулярным спектрам. Спектральный анализ можно производить не только по спектрам испускания, но и по спектрам поглощения. Именно линии поглощения в спектре Солнца и звезд позволяют исследовать химический состав этих ...
... веществ, прозрачных в данной области спектра, n увеличивается с увеличением f (уменьшением l), чему и соответствует распределение цветов в спектре, такая зависимость n от f называется нормальной дисперсией света. Разноцветная полоска на рис. 2 есть солнечный спектр. 1.3. Первые опыты с призмами. Представления о причинах возникновения цветов до Ньютона Описанный опыт является, по сути дела, ...
... и сигнализация нарушений и аварийных ситуаций с их протоколированием; Возможность дистанционного управления регулирующими исполнительными механизмами; Надежность. Для более эффективного функционирования системы автоматизации можно предъявить к Scada-пакету следующие требования: Контроль над технологическим процессом, состояние технологического оборудования и управление процессами и ...
... . Соответственно ряды распределения чаще всего являются результатом группировки. Ряды распределения бывают первичными и вторичными. К первичным относятся упорядоченные (или вариационные) ряды по данным статистического наблюдения. Эти ряды характеризуются дискретной записью уровней и небольшими частотами (часто они равны единице). Вторичные ряды обязательно являются результатом группировки по ...
0 комментариев