Использование отходов сельскохозяйственного производства

11469
знаков
0
таблиц
5
изображений

Введение

Наличие большого количества отходов химической промышленности, сельскохозяйственного производства, различных видов бытовых отходов может быть неплохой альтернативой традиционным наполнителям, что решает одновременно технологические, экономические, экологические проблемы. В настоящее время в качестве наполнителей часто используются отходы различных химических производств. Имеется также большое количество отходов сельскохозяйственного производства, в частности отходов, получаемых при производстве крупяных изделий из гречихи и проса. В связи с этим предложено использование этих отходов в качестве наполнителей для ПКМ. Использование таких наполнителей позволяет не только существенно снизить затраты на получение наполнителей, а, соответственно и стоимость изделий. Кроме того, такие наполнители можно модифицировать, обеспечивая им комплекс заданных свойств.

 


Использование отходов сельскохозяйственного производства для наполнения полиэтилена

Сбор зерновых культур на территории РФ в период с 1996–2005 г. г. составил: просо – 7557 тыс. т., гречиха – 5816 тыс. т. При обмолоте данных крупяных продуктов существенную долю составляет лузга (отходы обмолота при производстве круп): 15,5% – для проса, 19,3% – для гречихи Таким образом, ежегодно количество лузги проса составляет ~ 117 тыс. т., лузги гречихи ~ 112 тыс. т. В этой связи предложено использование данных отходов в качестве наполнителей для полиэтилена. [44]

Использование таких наполнителей позволяет не только существенно снизить затраты на получение наполнителей, а, следовательно, и стоимость изделий, но и использовать экологически чистое сырье, что обеспечит возможность расширения областей применения изделий из ПКМ. Кроме того, такие наполнители возможно модифицировать, обеспечивая им комплекс заданных свойств, в том числе и пониженную горючесть.

В связи с отсутствием в литературе данных по свойствам отходов обмолота гречихи (ООГ) и проса (ООП), а также для оценки их взаимодействия с другими компонентами композиций и влияния их на процессы пиролиза и горения ПКМ, исследовались свойства используемых наполнителей.

Химический состав наполнителей изучался с применением метода ИКС, устойчивость к воздействию температур и способность к коксобразованию – методом ТГА, гранулометрический состав – ситовым анализом, насыпная и истинная плотность – в соответствии с ГОСТом, форма частичек – методом световой микроскопии.

Так как на прочностные свойства наполненных композиций большое влияние оказывают физические свойства наполнителей: размер частиц наполнителя, их форма и распределение в материале, то проводили подготовку наполнителя, заключавшуюся в его температурной обработке и измельчении.

Частички лузги, по данным световой микроскопии, имеют лепесткообразную форму со средними размерами: длина ~ 2–4 мм, толщина ~0,1 мм (рис. 1)

В связи с тем, что данный наполнитель имеет небольшую толщину при достаточно больших размерах, он обладает высокой удельной поверхностью, что должно обеспечить хорошую смачиваемость наполнителя связующим.

 

а б

Рис. 1. а) отходы обмолота гречихи; б) отходы обмолота проса (исходные)

По химическому составу они представляют собой в основном крахмал и клетчатку, включают 14–25% воды и незначительное количество минеральных веществ, что частично подтверждается данными ИКС (рис. 4,5).

Для наполнения использовались частички как без разрушения структуры и формы, так и предварительно измельченные в ножевой дробилке.

Измельченные ООГ и ООП имеют гранулометрический состав представленный на рис. 3 и неправильную форму частиц.


Рис. 3. Гранулометрический состав измельченной лузги гречихи и проса

Средний размер частиц составляет 2,5 мм и такому размеру соответствует ~60% наполнителя.

Определена насыпная плотность измельченного наполнителя, составляющая 16,35 кг/м3 для ООГ, и 17,4 кг/м3 для ООП, соответственно. Отходы данных производств не растворяется в воде, в щелочах обугливается, в минеральных кислотах – не растворяется, отмечено незначительное изменение массы в ледяной уксусной кислоте и концентрированной муравьиной кислоте.

В связи с тем, что основным методом получения изделий из термопластов является литье под давлением, в процессе которого на материал воздействуют высокие температуры, оценено влияние температур на наполнители. ООГ и ООП подвергались воздействию температуры 190, 250, 400°С в течение различного времени от 10 до 180 мин. Температурная обработка уже при 250°С в течение 90 мин. изменяет объем и внешний вид наполнителя. Частицы оболочек как бы усаживаются, становятся более хрупкими и значительно легче поддаются измельчению.

Изменения в химическом составе ООГ и ООП после термовоздействия исследовались методами термогравиметрического анализа (ТГА) и инфракрасной спектроскопии (ИКС) (рис. 4,5).

Дегидратация исходных ООГ и ООП происходит в интервале температур 20–150°С с потерями массы 3,5–8%, что подтверждается эндотермичностью данного процесса.

Деструкция исходных ООГ и ООП начинается при 200°С – ООГ и 160°С – ООП, потери массы по завершению основной стадии деструкции составляют 64% у ООГ и 57,5% у ООП. Воздействие температур 200 и 250°С при продолжительности термообработки (от 10 до 180 мин) существенно не влияют на термостойкость образцов.

Исследования химического состава как исходных, так и термообработанных ООГ и ООП методом ИКС показали наличие в спектрах ИКС глубокой полосы поглощения в области 3200–3500 см-1, свидетельствующей о наличии в оболочках гречихи и проса, связанных водородными связями, ОН¯групп. Полосы поглощения при 2923 см-1 следует отнести к валентным колебаниям связей СН – СН3 группы, 2853 см-1 СН2 группы. Обнаружены также валентные колебания кольца  при 1090 см-1, и мостика (–С–О–С–) при 1060 и 898 см-1.

Анализ спектров термообработанных при 250 и 400°С ООГ и ООП показывает, что при воздействии температуры имеются различия в интенсивности и положении некоторых полос.

Так, у термообработанных, особенно при 400°С, ООГ и ООП уменьшается интенсивность полосы поглощения ОН групп, исчезают полосы, соответствующие поглощению – С–О–С – глюкозидной связи (1060 и 898 см-1) и увеличивается интенсивность колебаний СН2 групп (2853 см-1). Все эти изменения могут свидетельствовать о разрушении макромолекулы по глюкозидным связям.


Подпись: П р о п у с к а н и е

1

2

3

4

 

-ОН

 

-СН2

 

-СН3

 

-С-О-С-

 


Рис. 4. Данные ИКС отходов обмолота гречихи (ООГ):

1 – ООГ исходный; 2 – ООГ термообраб. (t=190°С; τ=90 мин); 3 – ООГ термообраб. (t=250°С; τ=90 мин); 4 – ООГ термообраб. (t=400°С; τ=2 мин)

Подпись: П р о п у с к а н и е

1

2

3

4

 

-С-О-С-

 

-СН3

 

-СН2

 

-ОН

 


Рис. 5. Данные ИКС отходов обмолота проса (ООП):

1 – ООП исходный; 2 – ООП термообраб. (t=190°С; τ=90 мин); 3 – ООП термообраб. (t=250°С; τ=90 мин); 4 – ООП термообраб. (t=400°С; τ=2 мин)


ООГ и ООП использовали в качестве наполнителей для полиэтилена.

Компоненты в композиции совмещались следующим образом: осуществлялась подготовка исходных компонентов; ПЭ смешивался с ООГ и ООП сухим методом, до равномерного распределения наполнителя в объеме ПЭ, полученная композиция обрабатывалась, используемой в качестве антиадгезива, полиэтиленсилоксановой жидкостью (ПЭС).

Исследовались композиции, содержащие до 10 масс. ч. ООГ и ООП. Введение большего количества отходов затруднено вследствие достаточно больших размеров даже измельченных отходов и их низкой насыпной плотности.

Для выбора способа переработки, перерабатывающего оборудования и режимов переработки оценивалась текучесть композиций по показателю текучести расплава (ПТР). Определение проводилось в интервале температур 150–210°С и интервале нагрузок 2,6–10 Н. Показано, что с увеличением нагрузки при всех исследуемых температурах текучесть композиции увеличивается.

 
Аналогичное влияние на показатель текучести оказывает температура. С увеличением температуры при испытаниях со 150 до 210°С ПТР возрастает (рис. 17). На основании проведенных исследований для получения образцов методом экструзии выбраны оптимальные технологические параметры:

Т=170°C, Р=100МПа.

Согласно технологическим требованиям ПТР для литьевых марок составляет 2–20 г./10 мин., следовательно, исследуемые композиции можно перерабатывать литьем под давлением. [45,46]

Введением наполнителей достигается существенное изменение физико-химических и механических свойств получаемых композиционных материалов.

ПЭ низкой плотности относится по своим прочностным свойствам к классу конструкционных материалов общетехнического назначения.

Образцы, содержащие отходы обмолота гречихи и проса характеризуются комплексом свойств, близких к ненаполненному ПЭ. Отмечены уменьшение плотности, повышение устойчивости к изгибу и теплостойкости, повышение ползучеустойчивости.

Изменение физико-механических характеристик обусловлено изменением структуры наполненных полимеров [49]. Меняется характер разрушения ПКМ на основе ПЭ. Ненаполненный ПЭ при приложении растягивающих нагрузок деформируется с образованием «шейки», то есть, способен к образованию и развитию вынужденно-эластической деформации [47,48].

Полиэтилен, наполненный как исходными, так и измельченными отходами, при растягивающих нагрузках теряет способность к возникновению и развитию вынужденно-эластической деформации, уменьшается относительное удлинение.

Образцы, содержащие лузгу меньших размеров обладают лучшей способностью к деформации, что связано с более равномерным распределением наполнителя.

Таким образом, в результате исследований была показана возможность применения отходов обмолота гречихи и проса в качестве наполнителя ПЭ. Отмечено, что введение данных отходов позволяет перерабатывать композицию методом экструзии при сохранении физико-механических свойств и термостойкости ПЭ со снижением его стоимости. Возможно также получение биодеградируемых композитов.


Заключение

На основании информационного анализа, можно сделать вывод о том, что полимеры, в том числе и полиэтилен обладают уникальным комплексом свойств, не имеющих аналогов среди традиционных конструкционных материалов. В связи с этим, неуклонно растут темпы производства полимерных материалов и расширяются области их применения. Применение полимерных материалов имеет и негативную сторону, связанную с горючестью большинства полимеров. Поэтому во многих странах приняты стандарты, определяющие допустимый уровень горючести полимерных материалов, в таких отраслях как: транспортное машиностроение, электротехника, производство изделий бытового назначения, строительство. С помощью целенаправленного регулирования свойств полимеров, возможно получать материалы с заранее заданными свойствами, в том числе и пониженной горючестью. Работы по этому направлению ведутся давно, но в недостаточном количестве, т. к. это связано со сложностью поставленной задачи и необходимостью учитывать на только эффективность замедлителей горения, но и влияние используемых веществ на технологические, эксплуатационные свойства материалов, доступность замедлителей горения, экономические аспекты их производства и применения. Комплексное решение этих проблем в настоящее время на достигнуто, разработанные системы сложны и содержат добавки, оказывающие негативное влияние на физико-механические, теплофизические свойства и на окружающую среду.

Актуальность этой проблемы обусловлена необходимостью создания материалов пониженной горючести, а также наличием большого количества отходов химической и сельскохозяйственной промышленности, утилизация которых в настоящее время не проводится и использование которых в качестве наполнителей решает одновременно с технологическими и экологические проблемы.


Информация о работе «Использование отходов сельскохозяйственного производства»
Раздел: Химия
Количество знаков с пробелами: 11469
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
64850
0
0

... – ростовщические конторы, которым главное – извлечение денежной прибыли вне зависимости от того, какие последствия для экономики и страны это повлечет. Решению проблем экологии сельскохозяйственного производства могли бы помочь сезонные кредиты. Чтобы помочь крестьянину, российское правительство в каждом бюджете предусматривает погашение части процентной ставки по коммерческим кредитам для ...

Скачать
35821
2
1

... " никогда не проводились. Поэтому данный объект можно рассматривать как потенциально опасный для окружающей природной среды и здоровья населения. Другой проблемой сельскохозяйственного производства являются отходы животноводства. Количество образующихся отходов животноводства ежегодно уменьшается ввиду значительного сокращения поголовья животноводческих комплексов, однако проблемы в сфере ...

Скачать
13492
0
0

... и длительности вспышки. Не исключено, что с помощью импульсных ламп станет возможным обеззараживание животноводческих стоков, витаминизации кормовых дрожжей, а также использование коротковолнового УФ-излучения в других технологических процессах сельскохозяйственного производства, где необходимо не только повышение мощности излучения, но и время для стабилизации продуктов фотодиссоциации сложных ...

Скачать
74610
5
0

... на его основе, уникальное сочетание свойств изделий, возрастающий спрос потребителей стимулируют развитие технологии производства и переработки интеркалированного графита. Сейчас интеркалированный графит промышленно получают преимущественно по химической технологии, окисляя углеродное сырье в концентрированных серной или азотной кислотах. Для этого в H2SO4 вводят дополнительно окислитель (K2Cr2O7 ...

0 комментариев


Наверх