2.3 Біологічний кругообіг речовин

З життєдіяльністю живої речовини тісно пов’язаний біологічний кругообіг.

Вивчення екосистем полягає, перш за все у дослідженні великих біогеохімічних циклів (кругообігів). Мова йде про циркуляцію хімічних елементів абіотичного походження, які потрапляють із навколишнього середовища в живі організми і з організмів у навколишнє середовище. Неорганічні елементи вносяться в тканини рослин і тварин у процесі їх росту і розвитку і там входять до складу органічних речовин. Після смерті організму ці елементи зазнають складних перетворень, після чого потрапляють у нові організми. В. І. Вернадський зазначав, що біогенна міграція атомів зумовлюється трьома різними процесами життя:

1) метаболізмом живого організму - його диханням, живленням, різними відходами;

2) ростом організмів;

3) розмноженням, збільшенням кількості організмів. Усі три процеси взаємопов'язані, проте кожен із них вносить у біосферу різний для кожного виду організмів запас геохімічної енергії.

Розрізняють біогенні міграції атомів: 1-го роду - для мікроорганізмів і 2-го роду - для багатоклітинних організмів. Біогенна міграція одноклітинних незрівнянно більша за міграцію атомів багатоклітинних організмів. Із появою людини на Землі виникла міграція атомів 3-го роду, яка відбувається внаслідок її діяльності.

До головних циклів, що мають місце в біогеоценозах (екосистемах), відносять біогеохімічні цикли кисню, вуглецю, води, азоту, фосфору, сірки, біогенних катіонів. Розглянемо детальніше ці цикли.

Генезис і кругообіг кисню. Приблизно четверта частина атомів усієї живої матерії припадає на частку кисню. Він не завжди входив до складу живої атмосфери. Кисень з'явився одночасно з першими хлорофіловими організмами. По мірі утворення під дією ультрафіолетової радіації кисень трансформувався в озон. Шар озону швидко став достатнім, щоб хлорофілові організми (головним чином, фітопланктон) могли рости і вивільнювати кисень.

На наявність кисню на земній поверхні вже приблизно два мільярди років тому вказує присутність залізистих окислів у відповідних геологічних відкладеннях. Але лише в останні двадцять мільйонів років вміст його в атмосфері Землі досяг приблизно 20%.

Вільний кисень у великих кількостях поглинається при диханні, використовується для підтримання горіння та застосовується в різних технологічних процесах. Вільний кисень регенерується в процесі фотосинтезу зелених рослин. Джерелом кисню є вода і вуглекислий газ, його утворення відбувається за допомогою сонячної енергії.

Існує відносна рівновага між киснем, що утворюється, і киснем, який витрачається для забезпечення життєдіяльності і виробництва.

Кругообіг вуглецю. Джерела вуглецю в природі численні й різноманітні. Між тим, тільки вуглекислота, яка знаходиться в газоподібному стані та у воді, є тим джерелом, яке служить основою для переробки вуглецю в органічну речовину живих істот. Захоплена рослинами вуглекислота в процесі фотосинтезу перетворюється на вуглеводи. Під час інших процесів біосинтезу вона перетворюється на протеїни, ліпіди і т.д.

З іншого боку, всі організми дихають і виділяють в атмосферу вуглець у формі вуглекислоти. Коли ж настає смерть, то сапрофаги і редуценти розкладають і мінералізують трупи, утворюючи ланцюги живлення, у кінці яких вуглець знову надходить у кругообіг у формі вуглекислоти. Мертві рослинні і тваринні залишки, що накопичуються, сповільнюють кругообіг вуглецю. Тварини-сапрофаги і мікроорганізми, які живуть у ґрунті, перетворюють накопичені на його поверхні залишки в нове утворення органічної матерії - гумус. Швидкість впливу організмів на гумус зовсім не однакова. Іноді ланцюг буває коротким і неповним: ланцюг сапрофагів позбавляється можливості функціонувати через нестачу кисню або внаслідок дуже високої кислотності; органічні залишки накопичуються у формі торфу і утворюють торф'яні болота. Тут призупиняється кругообіг вуглецю. Скупчення викопних органічних сполук у вигляді кам'яного вугілля і нафти свідчить про те саме, оскільки вуглекислота накопичується у вигляді карбонату кальцію (крейда, вапняки) хімічного чи біогенного походження. Часто ці маси вуглецю залишалися поза кругообігом упродовж цілих геологічних періодів, поки карбонат кальцію у вигляді гірських хребтів не піднімався над поверхнею моря. З цього моменту починалося надходження вуглецю і кальцію в кругообіг. Воно здійснювалося внаслідок вилуговування вапняку атмосферними опадами чи під впливом лишайників, а також коренів квіткових рослин. Вуглець, який накопичився в ґрунті чи гірських породах, може бути звільнений і в процесі горіння, викликаного людською діяльністю - опалення, промисловість та ін.

Кругообіг азоту. Повітря містить більше 80% азоту, воно безперервно і в різних формах забезпечує його кругообіг. Електричні розряди, які супроводжують грози, синтезують (з атмосферного азоту і кисню) оксиди азоту; ці оксиди потрапляють у ґрунт разом з дощовою водою. Таким шляхом в екосистемі у формі селітри чи азотної кислоти накопичується від 4 до 10 кг азоту на 1 га за рік. Відбувається і фотохімічна фіксація азоту. Але найбільша кількість цього елементу надходить в екосистему в результаті діяльності мікроорганізмів - азотфіксаторів, які здатні використовувати енергію свого дихання для прямого засвоєння атмосферного азоту і синтезування протеїдів. Таким чином у ґрунт вноситься ще близько 25 кг азоту на 1 га. Найбільш ефективними в цьому відношенні є азотфіксуючі бактерії, які живуть у симбіозі з бобовими рослинами в бульбочках на коренях цих рослин.

Азот із різноманітних джерел надходить до коренів у формі нітратів, які абсорбуються і транспортуються в листя, де використовуються для синтезування протеїнів. Ці протеїни є основою азотного живлення тварин. Протеїни рослинного і тваринного походження також є продуктом харчування й різних мікроорганізмів. Трупи організмів розкладаються редуцентами. Кожна група редуцентів спеціалізується на якійсь одній ланці цього процесу. Ланцюг закінчується діяльністю амоніфікуючих організмів, що утворюють аміак, який далі може ввійти в цикл нітрифікації - одні бактерії його окислюють у нітрити, а інші - нітрити в нітрати,

З іншого боку, бактерії-денітрифікатори постійно віддають азот в атмосферу: вони розкладають нітрати до азоту. Але вони активні лише в ґрунтах, які багаті азотом і вуглецем, і розкладають щонайбільше 20% загального азоту (щорічно в атмосферу його надходить до 50-60 кг з 1 га).

Азот може вийти з кругообігу, якщо досягне океану, де він акумулюється в глибоководних відкладеннях. Перш ніж азот потрапляє в абісальні відкладення, частина його захоплюється організмами морського фітопланктону, після чого він, як і фосфор, входить у цикл живлення м'ясоїдних, який закінчується рибами, що є кормом для птахів і ссавців. Ця частина азоту потрапляє з їхніми екскрементами на поверхню материка.

Втрати азоту, який залишається в абісальних відкладеннях, компенсуються азотом із вулканічних газів.

Кругообіг води. Вода не тільки джерело кисню, але й найбільш значна складова частина тіла живих організмів. Великий кругообіг води на поверхні земної кулі добре відомий – випаровування, створюване сонячною енергією, дає атмосферну воду. Ця вода конденсується у формі хмар. Охолодження хмар викликає опади, які поглинаються ґрунтом або стікають по його поверхні. Таким шляхом вода повертається в моря і океани. У межах екосистем можна виділити такі фази кругообігу води: перехоплення, евакотранспірацію, інфільтрацію і стікання.

Рослинність виконує важливу екрануючу функцію, перехоплюючи частину опадів до того, як волога досягне ґрунту, і випаровуючи її в атмосферу. Це перехоплення, яке буває максимальним при слабких дощах, може в помірних широтах сягати до 25% від загальної суми опадів. Вода, яка проникає крізь крони у формі крапель з листя, або стікає по стеблах і стовбурах, сягає ґрунту, просочується в нього, або приєднується до поверхневого стоку. Частина інфільтраційної води затримується в ґрунті, причому тим сильніше, чим значнішим є ґрунтовий колоїдний комплекс. Та частина води, яка промиває ґрунт на глибину 20-30 см, може знову піднятися на його поверхню по капілярах і випаруватися. Корені рослин здатні всмоктувати ґрунтову воду зі значно більшої глибини, ніж 20-30 см; ця вода доставляється в листя і транспортується в атмосферу.

Евакотранспірацією називають віддавання екосистемою води в атмосферу; вона включає і фізично випарувану воду, і воду, яка біологічно транспірується.

Кількість води, що транспірується рослинами, є досить великою. Одна береза випаровує за день 75 л води, бук - 100 л, липа -200 л, а 1 га лісу - від 20 до 50 тис. л. Транспірація посилюється з покращанням водопостачання. Пшениця за період вегетації використовує з 1 га 3 750 т води, що відповідає 375 мм опадів, а продукує 12,5 тонн (сухої маси) рослинної речовини.

Величина евакотранспірації, яка складається з сумарної кількості води, що транспортується рослинами і випаровується ґрунтом, для Середньої Європи становить приблизно 1 тис. тонн на 1 га за рік.

Рослинність адаптується до місцевого кругообігу води. Якщо кількість дощової води, яка просочується в ґрунт, перевищує його максимальну вологоємкість, то вона досягає рівня ґрунтових вод. Об'єм води, що просочується, пропорційний вологості клімату і водопроникності ґрунту, тобто збільшується в більш легких піщаних ґрунтах і зменшується в ґрунті, який сильно переплетений коренями рослин з підвищеною транспіраційною здатністю. Просочування атмосферних опадів до рівня ґрунтових вод сприяє вилуговуванню біогенних елементів і колоїдів ґрунту. Втрати, викликані поверхневим стоком, підвищуються при збільшенні крутизни схилу і при зменшенні щільності рослинного покриву.

Кругообіг фосфору. Кругообіг фосфору являє собою дуже простий незамкнений цикл. Фосфор здійснює кругообіг у наземних екосистемах як важлива і необхідна складова частина цитоплазми клітини. Редуценти мінералізують органічні сполуки фосфору з відмерлих організмів у фосфати, які знову споживаються коренями рослин. Величезні запаси фосфору, накопичені за минулі геологічні епохи, містять гірські породи. У процесі руйнування ці породи віддають фосфати наземним екосистемам, але значні кількості фосфатів виявляються залученими в кругообіг води, вилуговуються і потрапляють у море. Тут вони збагачують солоні води, живлять фітопланктон і організми, які пов'язані з ними харчовими ланцюгами. Частина фосфатів використовується морськими екосистемами, інша частина накопичується в океанічних відкладеннях. Часткове повернення фосфатів на землю забезпечують морські птахи.

Вважається, що кожного року повертається в кругообіг 60 тис. т фосфору, що зовсім не компенсує тих 2 млн. т фосфатів, які щорічно добуваються з покладів і швидко вилуговуються при використанні у вигляді добрив.

Кругообіг сірки. Сірка, яка знаходиться в ґрунті, є продуктом розкладання материнських гірських порід, що містять пірити і халькопірити, а також продукт розкладання органічних речовин рослинного походження. Органічні речовини тваринного походження містять мало сірки. Корені адсорбують ґрунтову сірку, яка входить у створювані рослиною сірчані амінокислоти (цистин, цистеїн, метіонін).

Після відмирання рослин сірка повертається в ґрунт. Це здійснюється численними організмами. Деякі з них відновлюють сірку органічних сполук у сірководень і сірку, а інші організми окисляють ці продукти в сульфати, які поглинаються коренями рослин. Таким чином підтримується кругообіг сірки в природі. Крім сірки органічного походження, рослини можуть вводити в цикл значну кількість сірки, яка переноситься повітряними масами і дощовою водою з промислових районів (дими). Це джерело забезпечує від 2,7 до 260 кг сірки на 1 га за рік. [4]


Висновок

Вивчення біосфери стає все більш важливим й актуальним завданням. Це викликано безупинно зростаючим впливом людини на навколишнє середовище. Уже зараз ми повинні вміти ясно передбачати всі можливі наслідки нашого впливу на природу. Можливість і правильність такого прогнозу залежать від глибини наших знань про будову й функціонування біосфери в цілому і її різних ділянок і компонентів. Особливо важливо мати уявлення про роль живих організмів - основної рушійної сили в біосфері.

Доля біосфери - проблема, що стосується не тільки всіх без винятку вчених, незалежно від їхньої спеціальності, але практично й кожного з нас.

У першому розділі роботі було висвітлено різні підходи до тлумачення поняття "біосфера", наведені її межі та будова. Особлива увага була приділена працям засновника вчення про біосферу В. І. Вернадського. Саме Вернадський вперше показав, що область системної взаємодії живої й косної речовини являє собою найбільшу екосистему, надскладну оболонку Землі, а сукупна діяльність живих організмів у біосфері проявляється як геохімічний фактор планетарного масштабу.

На основі робіт В. І. Вернадського й інших дослідників, які зробили великий внесок у вивчення біосфери планети, пропонується розрізняти три основні її форми: біологічної систематики, біогеографічні, екологічні. Речовинний склад біосфери включає сім глибоко різнорідних, але геологічно не випадкових частин: живу речовину; біогенну речовину - народжуване й перетворене живими організмами (горючі копалини, вапняки й т.д.); косну речовину (утворену без участі живих організмів); біокосну речовину – косну речовину, перетворену живими організмами (вода, ґрунт, кора вивітрювання, мули); речовину радіоактивного розпаду (елементи й ізотопи уранового, торієвого й актиноуранового ряду); розсіяні атоми земної речовини й космічних випромінювань; речовину космічного походження у формі метеоритів, космічного пилу й ін.

У будові й морфології біосфери винятково важливе значення для розвитку живої речовини мають наступні її елементи (зверху вниз): шар живої речовини, так звана "плівка життя"; педосфера, або ґрунтовий покрив; ландшафтно-екологічні системи - функціональні системи, що включають живі організми й середовище їхнього перебування; кора вивітрювання, тобто зона руйнування й перетворення гірських порід, їхніх мінерально-геохімічних змін у верхній частині земної кори під впливом різних факторів; давня біосфера (палеобіосфера) - комплекс гірських порід, рельєфу й інших ландшафтних компонентів, що залягають нижче сучасної біосфери й похованих під її новітніми утвореннями; численні мінерали верхньої частини земної кори й біосфери: глини, вапняки, боксити й т.д.; природні води осадової оболонки; мільйони органічних й органо-мінеральних з'єднань: вугілля, графіт, гумусові речовини, нафта, природні гази; мінеральні ресурси біосфери й земної кори, розповсюджені у формі вільних елементів: міді, срібла, золота, вісмуту, платини й т.д. Останні - головне джерело сировини для металургії, хімічної промисловості й багатьох інших галузей. Їхній видобуток і використання в економіці ростуть рік у рік.

Отже, зі сказаного випливає, що біосфера є результатом складного механізму геологічного й біологічного розвитку косної й біогенної речовини. З одного боку, це середовище життя, а з іншого боку - результат життєдіяльності. Головна специфіка сучасної біосфери - це чітко спрямовані потоки енергії й біогенний (пов'язаний з діяльністю живих істот) круговорот речовин.

Крім того, у розділі були розглянуті гіпотези виникнення біосфери та етапи її еволюції.

Другий розділ роботи присвячений ролі живої речовини на планеті. Спочатку вводиться поняття про живу речовину, як одну із центральних ланок концепції біосфери, розглядаються наукові ідеї В. І. Вернадського про живу речовину. Далі наводиться коротка характеристика шести рівнів організації живої матерії.

Найбільше уваги приділено функціям живої речовини, головними з яких за В. І. Вернадським є газова, концентраційна, окислювально-відновна, біохімічна та біогеохімічна діяльність людини. А. В. Лапо пізніше за свого колегу (1987) використав інший підхід і виділив не 5, а 4 функції біострома: енергетичну, деструктивну, концентраційну та середовищеутворюючу. Але можна відмітити, що багато функцій за Вернадським співпадають з функціями, виділеними Лапо.

Роль живої речовини у географічній оболонці надзвичайно важлива. Більшість оболонок, що входять до складу географічної оболонки більшою або меншою мірою видозмінені життям, а окремі її елементи (грунт, органогенні осадові породи, окремі види корисних копалин та ін.) могли виникнути тільки завдяки живій речовині. Біосфера хоча й є найлегшою оболонкою геосфери, однак її роль постійно збільшується протягом геологічної історії, відповідно, збільшується зростає і її роль у глобальних процесах, що відбуваються на планеті. На земної поверхні немає хімічної сили, що більш постійно діє, а тому й більш могутньої по своїх кінцевих наслідках, ніж живі організми, узяті в цілому. Цим і визначалася актуальність нашої теми.

Мета дослідження полягала в з’ясуванні характерних властивостей живої речовини, рівнів організації, функцій, що їх виконує жива речовина у географічній оболонці.

При написанні курсової роботи поставлені завдання були виконані, головна мета дослідження досягнута.


Список використаних джерел

1.       Баландин Р. К. "Вернадский: жизнь, мысль, бессмертие", - М.: Знание, 1988.

2.       Білявський Г. О. та ін. Основи екології: Підручник / Г. О. Білявський, Р. С. Фурдуй, І. Ю. Костіков. – К.: Либідь, 2004.- 408.

3.       Г. В. Войткевич, В. А. Вронский. Основы учения о биосфере: Кн. для учителя. – М.: Просвещение, 1989.-160 с.: ил., карт.

4.       Лапо А. В. "Следы былых биосфер", М.: Знание, 1979

5.       Николайкин Н. И. Экология: Учеб. для вузов / Н. И. Николайкин, Н. Е. Николайкина, О. П. Мелехова. – 2-е изд., перераб. и доп. – М.: Дрофа, 2003. – 624с.: ил.

6.       О. І. Федоренко, О. І. Бондар, А. в, Кудін. Основи екології: Підручник. – К.: Знання, 2006. – 543с.

7.       Петров. К. Н. Биогеография с основами охраны биосферы.

8.       Р. П. Федорищак. Загальне землезнавство: Навч. посібник. – К.: Вища шк.., 1995. – 223с.

9.       Чебышев Н. В., Гринева Г. Г., Козарь М. В., Гуленков С. И. Биология: Учебник. – М.: ВУНМЙ, 2000. – 592с.

10.    Ю. Д. Бойчук, Е. М. Солошенко, О. В. Бугай. Екологія і охорона навколишнього середовища: Навчальний посібник. – Суми: ВТД "Університетська книга", 2002. – 284 с.


Информация о работе «Вплив живих організмів на географічну оболонку»
Раздел: Экология
Количество знаков с пробелами: 112837
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
87810
4
3

... та управління екологічними процесами. Моніторинг дозволяє виявляти критичні та екстремальні ситуації, фактори антропогенного впливу на довкілля, здійснювати оцінку та прогноз стану об'єктів спостереження, керувати процесами взаємовпливу об'єктів гідросфери, літосфери, атмосфери, біосфери та техносфери. Таким чином, суть моніторингу зводиться до таких функцій: — контролю за станом об'єктів ...

Скачать
19934
0
0

... дування відкритих уроків, спільного планування уроків і т. д. Вчитель географії з врахуванням загально шкільного плану навчально – методичної роботи розробляє індивідуальний план реалізації міжпредметних зв’язків в курсах географії. Методика творчої роботи вчителя включає ряд етапів: 1.       Вивчення опорних тем і підручників інших предметів, читання додаткової наукової, науково – популярної і ...

Скачать
145573
0
2

... . км2. Найбільшими в області є водосховища, що утворилися після спорудження Кременчуцької (1952 р.) та Дніпродзержинської (1964 р.) ГЕС у долині Дніпра. Водосховища – це основа водогосподарських антропогенних ландшафтів як України, так і Полтавщини. Адже вони створюються людиною для накопичення та збереження води в ділянках регулювання стоку, зрошення та інших господарських потреб. Площа водного ...

Скачать
192521
7
3

... навчання на уроках географії, таких як моделюючий малюнок, картографічні засоби навчання, підручник з географії та електронний атлас. На основі аналізу класифікації функцій та методики застосування наочних засобів навчання географії нами були розроблені плани конспектів-уроків для 6, 7 та 8 класів із безпосереднім використанням, які б могли покращити рівень навчального процесу та успішності учн ...

0 комментариев


Наверх