МИНЕСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ
КАЗАХСТАН
СЕВЕРО-КАЗАХСТАНСКИЙ ГОСУДАРСВЕННЫЙ УНИВЕРСИТЕТ
ИМ. М. КОЗЫБАЕВА
ЛАБОРАТОРНАЯ РАБОТА №1
ВАРИАНТ №13
НА ТЕМУ: ПАРНЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ
Выполнила: студент Фамилия: Проверила: преподаватель Ф.И.О: |
ПО ДИСЦИПЛИНЕ: ЭКОНОМЕТРИКА
Петропавловск, 2008год
СОДЕРЖАНИЕ
1. ОПИСАНИЕ ЗАДАНИЯ
2. ОПИСАНИЕ РЕШЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ
Построение линейной регрессионной модели
Построение степенной регрессионной модели
3. Сравнительный анализ расчетов, произведенных с помощью формул Excel и с использованием «Пакета анализа»
1. ОПИСАНИЕ ЗАДАНИЯ
На основании данных нижеприведенной таблицы построить линейное и степенное уравнения регрессии.
Для построенных уравнений вычислить:
1) коэффициент корреляции;
2) коэффициент детерминации;
3) дисперсионное отношение Фишера;
4) стандартные ошибки коэффициентов регрессии;
5) t — статистики Стьюдента;
6) доверительные границы коэффициентов регрессии;
7) усредненное значение коэффициента эластичности;
8) среднюю ошибку аппроксимации.
На одном графике построить исходные данные и теоретическую прямую.
Дать содержательную интерпретацию коэффициента регрессии построенной модели. Все расчеты провести в Excel с использованием формул и с помощью «Пакета анализа». Результаты, полученные по формулам и с помощью «Пакета анализа», сравнить между собой.
По нижеприведенным данным исследуются данные по среднедневной заработной плате yi, (усл.ед.) и среднедушевому прожиточному минимуму в день одного трудоспособного xi, (усл.ед.):
Yi | 132 | 156 | 143 | 138 | 144 | 155 | 136 | 159 | 127 | 159 | 127 | 136 | 149 | 156 |
Xi | 84 | 96 | 89 | 80 | 86 | 97 | 91 | 102 | 83 | 115 | 72 | 86 | 95 | 100 |
Yi | 141 | 162 | 148 | 155 | 171 | 157 | 130 | 158 | 136 | 142 | 144 | 130 | 157 | 145 |
Xi | 91 | 96 | 77 | 82 | 108 | 102 | 88 | 97 | 81 | 97 | 88 | 76 | 94 | 91 |
Yi | 125 | 138 | 145 | 171 | 127 | 133 | 164 | 134 | ||||||
Xi | 76 | 85 | 102 | 115 | 72 | 86 | 100 | 76 |
а) Выполнить прогноз заработной платы yi при прогнозном значении среднедушевого прожиточного минимума xi, составляющем 117% от среднего уровня.
б) Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.
... 9472;───────┴─────────┘ Реализация алгоритма многомерного регрессионного анализа начинается с расчета важнейших статистических характеристик исходной информации и матрицы выборочных парных коэффициентов корреляции. Рассмотрим более подробно вариационные характеристики переменной у: ...
... ŷ = a0 + a1x , где ŷ - теоретические значения результативного признака, полученные по уравнению регрессии; a0 , a1 - коэффициенты (параметры) уравнения регрессии. Задача регрессионного анализа состоит в построении модели, позволяющей по значениям независимых показателей получать оценки значений зависимой переменной. Регрессионный анализ является основным средством исследования ...
... на зависимую и определение расчётных значений зависимой переменной (функции регрессии). Решение всех названных задач приводит к необходимости комплексного использования этих методов. Корреляционный и регрессионный анализ. Исследование связей в условиях массового наблюдения и действия случайных факторов осуществляется, как правило, с помощью экономико-статистических моделей. В широком смысле ...
... быстро выполняемой счетной операцией. Данная работа посвящена изучению возможности обработки статистических данных биржевых ставок методами корреляционного и регрессионного анализа с использованием пакета прикладных программ Microsoft Excel. Роль корреляцонно-регрессионного анализа в обработке экономических данных Корреляционный анализ и регрессионный анализ являются смежными разделами ...
0 комментариев