2. Расчетная часть

2.1           Материальный расчет

Запишем уравнение материального баланса для всего количества раствора

по растворенному веществу

где Gн – массовый расход начального (исходного) раствора, кг/с;

Gк – массовый расход конечного (упаренного) раствора, кг/с;

W – массовый расход выпариваемой воды, кг/с;

xк – массовая доля растворенного вещества в исходном растворе;

xн – массовая доля растворенного вещества в упаренном растворе.

Из уравнения материального баланса определяем массовое количество упаренного раствора и выпаренной воды.

 кг/ч

Выпаренной воды будет


W = 7800 – 2275 = 5525 кг/ч

2.2           Тепловой расчет

Тепловой расчет выполняется на основе закона сохранения энергии, согласно которому приход теплоты должен быть равен ее расходу.

Уравнение теплового баланса выпарного аппарата

Q + Gн·Cн·tн = Gк·Cк·tк + W·iвт + Qпот (5)

где Q – расход теплоты на выпаривание, Вт;

Cн, Cк – удельная теплоемкость начального (исходного) и конечного (упаренного) раствора, Дж/(кг·К);

tн, tк – температура начального раствора на входе в аппарат и конечного раствора на выходе его из аппарата, оС;

iвт – удельная энтальпия вторичного пара на выходе из аппарата, Дж/кг;

Qпот – расход теплоты на компенсацию потерь в окружающую среду, Вт.

Из уравнения теплового баланса находится расход теплоты на выпаривание, которое поступает с греющим паром.

Расход теплоты на нагревание раствора до температуры кипения:

Расход теплоты на испарение воды:


 

где Св – удельная теплоемкость воды при tк, Дж/(кг·К);

По условию раствор в аппарат поступает при температуре кипения, следовательно Qнагр = 0

Расход теплоты на компенсацию потерь в окружающую среду принимают в размере 3-5% от суммы (Qнагр + Qисп)

т.к. Qнагр = 0, то принимаем

Qпот = 0,3*Qисп и тогда

Определяем температуру вторичного пара в барометрическом конденсаторе. Определяется как температура насыщения при давлении в барометрическом конденсаторе.

При рб.к. = 0,18 to = 57,26

59,7-2,44=57,26

Определяем температуру вторичного пара в сепараторе выпарного аппарата


где t1 – температура вторичного пара в сепараторе,;

t0 – температура вторичного пара в барометрическом конденсаторе,;

Δtг.с. – гидравлическая депрессия (сопротивление), т.е. изменение температуры вторичного пара на участке сепаратор - барометрический конденсатор, вызванное падением давления пара из-за гидравлического сопротивления паропровода вторичного пара,.

Принимаем Δtг.с. = 1

тогда t1 = 57,26 + 1 = 58,26

этой температуре соответствует p1 = 0,1883

0,2031 – 0,0148 = 0,1883

Конечная температура раствора (температура кипения раствора в сепараторе) при которой упаренный раствор выводится из аппарата.

где tк – температура кипения раствора в сепараторе, ;

t1 – температура вторичного пара в сепараторе, ;

Δ tдепр. – температурная депрессия, выражающая повышение температуры кипения раствора по сравнению с температурой кипения чистого растворителя (воды) при том же давлением, .

Находим, что 24% раствор NaOH кипит под атмосферным давлением при температуре 111,47

110 + 1,47 = 111,47

Температурную депрессию можно определить по формуле Тищенко

где Δ tдепр. – температурная депрессия,;

tатм – температурная депрессия при атмосферном давлении,;

T – Абсолютная температура воды при данном давлении,;

 - теплота испарения для воды при данном давлении, Дж/кг.

tатм = 111,47 – 100 = 11,47

обозначим  

при pб.к. = 0,18


0,76 – 0,012 = 0,748

Δtдепр.= 0,748·11,47 = 8,58

Конечная температура раствора в сепараторе

tк = 58,26 + 8,58 = 66,84

Средняя температура кипения раствора в трубах

где tкип – средняя температура кипения в трубах,;

tк – температура кипения раствора в сепараторе (конечная температура раствора),;

Δtг.э. – гидростатическая депрессия (эффект) или повышение температуры кипения раствора вследствие гидростатического давления столба жидкости в аппарате,.

Вначале определим следующие параметры: оптимальная высота уровня по водомерному стеклу, определяется по формуле:

где оптимальная высота уровня, м;

плотности раствора конечной концентрации и воды при температуре кипения, кг/м3;

рабочая высота труб, м.

Примем tкип = 73оС, тогда

1196 + 42,8 = 1238,8

1183 + 42,4 = 1225,4

1225,4 + 4,69 = 1230,1


972 + 3.85 = 975.9

Гидростатическую депрессию определим по формуле

Средняя температура кипения раствора в трубах

 

Количество теплоты, передаваемое от греющего пара к кипящему раствору

при t1 = 58,26  


Расход пара

где  – расход греющего пара, ;

 – расход теплоты, Вт;

 – удельная теплота парообразования при абсолютном давлении рабс = 2 атм;

 – парообразование (степень сухости) греющего пара.

Влажность пара 5%, следовательно, x = 1 – 0,05 = 0,95

при рабс = 2,5 атм

Общая разность температур

где общая разность температур,;

tг.п. – температура греющего пара, ;

tо – температура вторичного пара в барометрическом конденсаторе, .

tг.п. = 126,25оС при p = 2,5 атм

Полезная разность температур

где – полезная разность температур,;

 – температура греющего пара;

 – температура кипения раствора в трубах (средняя),.

Проверка:

где  – сумма температурных потерь,

Расчет верен

Площадь поверхности нагрева выпарного аппарата

где F – площадь поверхности нагрева, м2

 – теплота, отданная греющим паром раствору, Вт

 – полезная разность температур,

K – коэффициент теплоотдачи,

Определяем коэффициент теплоотдачи от конденсирующегося водяного пара к поверхности вертикальных труб

где H – высота труб, м;

 – коэффициент теплоотдачи от греющего пара к стенке, ;

 – функция, зависящая от температуры конденсации;

Δt – разность температур конденсации греющего пара и наружной поверхности труб со стороны пленки конденсата, .

где  – температура конденсации

;

 – температура наружной поверхности труб, .

Коэффициент теплоотдачи от стенки труб к кипящему раствору

или


где  – коэффициент теплоотдачи от стенки к раствору,

;

 – безразмерный коэффициент, зависящий только от

отношения плотностей жидкости и пара;

λ – коэффициент теплопроводности раствора, ;

ρ – плотность раствора, ;

μ – коэффициент динамической вязкости, Па·с;

σ – коэффициент поверхностного натяжения, ;

 – температура кипения раствора,

где  – плотность водяного пара при  

определяем по закону состояния идеальных газов (Менделеев – Клапейрон)

Принимаем тепловую проводимость загрязнений стенки со стороны греющего пара ≈5800и со стороны кипящего раствора ≈2900

где  – коэффициент теплопроводности стали

В качестве первого приближения принимаем температуру наружной поверхности внешнего слоя загрязнений t' = 124

Тогда коэффициент теплоотдачи и плотность теплового потока от пара определится

Температура поверхности загрязнений со стороны раствора определится

Определяем коэффициент теплоотдачи к раствору

Плотность теплового потока

Следовательно, необходимо уменьшить температуру стенки со стороны пара

Второе приближение

Вновь вычисляем коэффициент теплоотдачи и плотность теплового потока от пара к наружной стенке

Температура внутренней поверхности

Коэффициент теплоотдачи и плотность теплового потока к раствору

Расхождение

Поэтому дальнейшее приближение не требуется.

Коэффициент теплопередачи

Где К – коэффициент теплопередачи, ;

 – коэффициент теплоотдачи от пара к стенке, ;

 – коэффициент теплоотдачи от стенки к раствору, ;

 – сумма тепловых сопротивлений.

Необходимая поверхность теплопередачи

Выбираем выпарной аппарат по ГОСТ 11987 – 81 F=160м2

Таблица 1. Техническая характеристика выпарного аппарата Масса аппарата кг 12000
Высота аппарата, Н мм 13500

Диаметр циркуляционной трубы, D2

мм 700

Диаметр сепаратора, D1

мм 2400
Диаметр греющей камеры, D мм 1200
Длина труб, l м 4000

Поверхность теплообмена при dтр=38*2мм

мм 160

Запас поверхности теплообмена

2.3 Конструктивный расчёт

2.3.1 Определение числа кипятильных труб

где  - площадь поверхности теплообмена, м2;

 - число труб;

 - средний диаметр труб, м;

 - длина труб, м.


Информация о работе «Выпарной аппарат с вынесенной греющей камерой»
Раздел: Промышленность, производство
Количество знаков с пробелами: 40393
Количество таблиц: 2
Количество изображений: 4

Похожие работы

Скачать
35522
6
0

... и аппарат загружается новой порцией исходного раствора. В установках непрерывного действия исходный раствор непрерывно подается в аппарат, а упаренный раствор непрерывно выводится из него. Наибольшее применение в химической технологии нашли выпарные аппараты поверхностного типа, особенно вертикальные трубчатые выпарные аппараты с паровым обогревом непрерывного действия. В зависимости от режима ...

Скачать
60470
5
7

... собой систему выпарных аппаратов, барометрического конденсатора, теплообменника, насосов, емкостей для исходного и упаренного растворов и трубопроводов участвующих в процессе выпаривания раствора. Согласно заданию проектируемая установка состоит из двух корпусов и представляет собой установку непрерывного действия, работающую под давлением. При выпаривании под повышенным давлением можно ...

Скачать
49744
1
18

... жидкости в трубах, а также от интенсивности парообразования Поэтому в аппаратах с принудительной циркуляцией выпаривание эффективно протекает при малых полезных разностях температур,. не превышающих 3—5 °С и при значительных вязкостях растворов Одна из конструкций выпарного аппарата с принудительной циркуляцией показана на рис 16. Аппарат имеет выносную вертикальную нагревательную камеру ...

Скачать
41930
6
2

... с выпарными аппаратами с принудительной циркуляцией. Для сильно пенящихся растворов рекомендуется применять аппараты с поднимающейся пленкой. 2. Технологическая часть.   Описание технологической схемы. В однокорпусной выпарной установке подвергается выпариванию водный раствор хлорида магния под вакуумом. Исходный раствор MgCl2 из емкости Е1 подается центробежным насосом Н в ...

0 комментариев


Наверх