2.1.2.1.5 Проверка на скалывание по клеевым швам в местах приклейки стенок к поясам
nш=4-количество клеевых швов.
2.1.2.2 Расчет по второй группе предельных состоянийПредварительно вычисляем коэффициенты, учитывающие переменность высоты сечений (k) и влияние деформаций сдвига от поперечной силы (с) - (прил.4. СНиП ||-25-80)
-отношение площади поясов к площади стенки двутавровой балки
Прогиб в середине пролета:
Предельный прогиб по (2*), табл. 19 п.2а будет равен fпред=L/257=0,0583м, фактический прогиб f=0,034м-меньше fпред.
2.2 Расчет клееной стойки однопролетной рамы 2.2.1 Исходные данныеПролет здания - 15 м, высота колонн - 6 м. Шаг несущих конструкций В = 6 м. Ограждающие конструкции покрытия и стен - панели длиной 6 м. Устойчивость конструкций обеспечивается постановкой скатных и вертикальных продольных связей между стойками.
2.2.2 Статический расчетСтатический расчет стоек заключается в расчете один раз статически неопределимой системы.
Постоянные расчетные нагрузки:
От веса покрытия = 0.801 кПа
От веса балки покрытия = 0.08 кПа
От веса стенового ограждения нагрузка принимается равной
= 0.64кПа
Временные нагрузки:
Снеговая нормативная = 0,56 кПа
Снеговая расчетная = 0,8 кПа
Нормативная ветровая нагрузка
= 0.30 кН/м - нормативное значение ветрового давления для 2-го ветрового района (СНиП (2.1 07-85)),
k - коэффициент, учитывающий изменение ветрового давления по высоте и типу местности
k = 0.75 до высоты h = 5 м, k = 0.8 при h = 6 м, k = 0.85 при h = 7 м
с1 = +0.8 с2 = - 0.4 согласно СНиП 2.01.07-85
Нормативная ветровая нагрузка до высоты 5 м:
а) давление = 0.30*0.75*0.8 = 0.18 кН/м
б) отсос = 0.30*0.75*0.4 = 0.09 кН/м
То же при высоте 6 м:
а) давление = 0.3*0.8*0.8 = 0.19 кН/м
б) отсос = 0.3*0.8*0.4 = 0.1 кН/м
То же при высоте 7 м:
а) давление = 0.3*0.85*0.8 = 0.2 кН/м
б) отсос = 0.3*0.85*0.4 = 0.1 кН/м
Расчетная ветровая нагрузка на раму:
= *γf*B = 0.18*1.4*6 = 1.512 кН/м - давление
= *γf*B = 0.09*1.4*6 = 0.756 кН/м – отсос
Ветровую нагрузку, действующую на участке стены от низа ригеля рамы до верха стены, заменим сосредоточенными силами W1 и W2, приложенными на уровне верха стоек:
W1 = =
W2= =
- расстояние от уровня низа ригеля до верха стены, м
, - значения активной ветровой распределенной нагрузки в уровне низа ригеля и в уровне верха стены, кН/м
Постоянное расчетное давление на стойку от вышележащих конструкций:
Собственный вес стойки определим, задавшись предварительными размерами ее сечения:
высота сечения
Принимаю сечение стойки состоящим из 12 слоев досок толщиной 33 мм, тогда hк = 33*12 = 396 мм
ширина сечения колонны равна bк = 185 мм (после фрезерования боковых поверхностей колонны, склеенной из досок шириной 200 мм).
Собственный вес стойки:
Рсв = b*h*H** = 0.185*0.396*6*1.1*5 =2,41 кН
Расчетная нагрузка от стенового ограждения, распределенная по вертикали с учетом элементов крепления (15% от веса стенового ограждения)
= *1.15*B = 0.64*1.15*6 = 4,41 кН
Эксцентриситет приложения нагрузки от стены qст на стойку принимаем равным полусумме высот сечений стойки и стены:
Расчетная нагрузка отвеса снега на покрытии
Определяем усилия в стойках рамы, приняв следующие сочетания нагрузок:
постоянная, снеговая, ветровая. Рама является один раз статически неопределимой системой, за неизвестное усилие принимается продольное усилие Х в ригеле:
Внутренние усилия в сечениях стойки от верха (х = 0) до заделки на опоре (х = Н) определим по формулам:
Изгибающие моменты в левой и правой стойках
Поперечные силы
Нормальные силы
- коэффициент сочетаний, вводимый для кратковременных нагрузок при одновременном учете 2-х кратковременных нагрузок - снеговой и ветровой.
Усилия в правой и левой стойках на уровне заделки , составляют:
Нормальная сила:
Изгибающие моменты:
Поперечные силы:
2.2.3 Конструктивный расчетВ плоскости рамы стойка работает как защемленная на опоре вертикальная консоль в условиях сжатия с изгибом. Из плоскости рамы стойка представляет собой стержень с неподвижными шарнирами на концах.
Сечение стойки имеет размеры 185х396 мм, тогда:
F = 0.185*0.396 = 0.073м Wx =
Jx =
= 0.289*0.396=0.114 = 0.289*0.185 = 0.053 м
В плоскости рамы расчет стойки на прочность производится как сжато-изгибаемого элемента:
- изгибающий момент от действия поперечных и продольных нагрузок, определяемый из расчета по деформированной схеме;
М - изгибающий момент в расчетном сечении без учета дополнительного момента от продольной силы;
ξ - коэффициент, учитывающий дополнительный момент от продольной силы вследствие прогиба элемента
φ - коэффициент продольного изгиба, определяемый в зависимости от гибкости элемента;
= 15 МПа -для древесины 2-го сорта. Расчетное сопротивление умножаем на коэффициент условия работы = 1.2, т.к конструкцию рассчитываем с учетом воздействия ветровой нагрузки.
Определяем гибкость стойки в плоскости изгиба, считая, что в здании отсутствуют жесткие торцевые стены:
При λ > 70 φ =
Из плоскости рамы колонну рассчитываем как центрально-сжатый элемент. Расстояние между узлами вертикальных связей устанавливаем по предельной гибкости λпр = 120
= = 120*0.289*0.185 = 6.41> 6 м → достаточно раскрепить стойку по ее верху,
Тогда
=
Проверка устойчивости плоской формы деформирования производим по формуле:
= Н - расстояние между точками закрепления стойки из плоскости изгиба;
- коэффициент, зависящий от формы эпюры изгибающих моментов на участке
Устойчивость стойки обеспечена.
2.2.4 Конструирование узла защемления стойкиа) требуемый момент сопротивления швеллеров
R - расчетное сопротивление стали
По ГОСТ 8240-72 выбираем швеллера с с расчетом, чтобы выполнялось условие:
Такими швеллерами будут №16 с Wx = 93,4 см и Jx = 747см
б) назначаем расстояние между осями тяжей из условия, чтобы было не менее 0.1Н и не менее 2h с округлением, кратным 50 мм в большую сторону. Принимаем = 0.8 м. Производим проверку сечения стойки на скалывание при изгибе по формуле
- расчетная поперечная сила
- поперечная сила в стойке на уровне верхних тяжей;
При х = 6 - 0.8 =5,2м
в) определяем усилие, действующее в тяжах и сминающее поперек волокон древесину стойки под планками
г) определяем площадь сечения одного стального тяжа в ослабленном сечении
m1 - коэффициент, учитывающий влияние нарезки
m2 - коэффициент, учитывающий возможную неравномерность распределения усилий в двойных тяжах.
По F находим диаметр тяжей dбр = 12 мм, Fнт = 1,13
д) определяем ширину планок из условия смятия
Принимаем ширину планок равной 60 мм.
д) определяем толщину планок δ из расчета их на изгиб как однопролетные свободно опертые балки, загруженные равномерно распределенной нагрузкой q с расчетным пролетом lпл, равным расстоянию между осями тяжей
- диаметр тяжей
- толщина стенки швеллера
Опорные реакции планок:
Нагрузка
Расчетный изгибающий момент:
Толщина планок:
Принимаем планку в соответствии с сортаментом δ = 25 мм
В данном проекте (производственное здание) для защиты деревянных конструкций от огня и биовредителей применяем препарат ХМБ-444 рецептурного приготовления. Состав хорошо растворяется в воде, не имеет запаха, не вызывает коррозию металлов, обладает огнезащитными свойствами, трудно вымывается из древесины. Пропитанная древесина хорошо склеивается и окрашивается. Препарат может применяться как внутри помещений, так и снаружи.
1. СНиП II-25-80. Деревянные конструкции. Нормы проектирования. - М: Стройиздат, 1983. - 31с.
2. СНиП 2.01.07-85. Нагрузки и воздействия. Нормы проектирования. - М.: Стройиздат, 1986. - 60с.
3. Пособие по проектированию деревянных конструкций (к СНиП А.Б. Шмидт, Ю.В. Халтурин, Л.Н. Пантюшина. 15 примеров расчета деревянных конструкций для курсовых и дипломных проектов: учебное пособие / АлтГТУ им. И.И. Ползунова. -Барнаул: изд. АлтГТУ, 1997. - 86с.
4. Конструкции из дерева и пластмасс: Учеб. для вузов / Ю.В. Слицкоухов, В.Д. Буданов, М.М. Гаппоев и др.; под ред. Г.Г. Карлсена. - М.: Стройиздат, 1986. -543с.
... древесины. Коэффициент, учитывающий влияние деформаций сдвига Прогиб с учетом влияния деформаций сдвига Жесткость балки обеспечивается. 1.3 Статический расчет поперечной рамы с учетом сейсмических нагрузок Расчет поперечной рамы выполним на два сочетания нагрузок: основное и особое. Основное сочетание включает нагрузки от собственного веса конструкций, веса снега и ветра; особое сочетание - ...
... , зададим 12 по 4 м и по крайние по 4 м. Высота здания, пролет фермы и ветровой район при назначении шага рам не учитываются. 1.3. Связи. Конструктивная схема каркаса одноэтажного деревянного здания с треугольной 6-ти панельной фермой и схема размещения связей представлены на рисунке: 1 – вертикальные связи между фермами. Размещаются так, чтобы ни одна ферма не осталась без вертикальных ...
... району, зададим 15 по 4.5 м и крайние по 3.6 м. Высота здания, пролет фермы и ветровой район при назначении шага рам не учитываются. 1.3 Связи Конструктивная схема каркаса одноэтажного деревянного здания с полигональной 8-ти панельной фермой и схема размещения связей представлены на рисунке: 1 – вертикальные связи между фермами. Размещаются так, чтобы ни одна ферма не осталась без ...
... затяжек и узлы крепления подвесок. Опорные и коньковые шарниры выполнены с применением валиковых шарниров. 2. Проектирование панели со сплошным срединным слоем Требуется запроектировать утепленную панель покрытия производственного здания. Панели укладываются непосредственно на несущие конструкции, устанавливаемые с шагом 6 м. В целях максимальной сборности принимаем размеры панели в плане ...
0 комментариев