Газоразрядные генераторы шума

119959
знаков
17
таблиц
32
изображения

4.3.2 Газоразрядные генераторы шума

Широкое применение в сантиметровом диапазоне волн в качестве первичного источника шума нашли газоразрядные шумовые трубки с положительным столбом. Газоразрядные шумовые трубки (ГШТ) имеют высокую равномерность спектральной плотности мощности шума в широкой полосе частот, стабильный и относительно высокий уровень мощности, просты в эксплуатации, устойчивы к жестким воздействиям внешней среды и обладают достаточно высокой эксплуатационной надежностью.

Газоразрядные шумовые трубки представляют собой стеклянную трубку, наполненную инертным газом (аргоном или неоном) до давления от сотен до тысяч Паскалей. На одном конце трубки расположен катод, на противоположном - анод. Свойство газоразрядных трубок генерировать шумы обусловлено колебаниями электронов в плазме. Для практического использования шумового излучения положительного столба ГШТ помещают в специальные генераторные секции. В зависимости от диапазона частот и типа трубки могут быть использованы генераторные секции, выполненные на волноводе, коаксиальной или полосковой линии.

Волноводные шумовые генераторы представляют собой отрезок волновода, в центре широкой стенки которого под малым углом (7 - 15°) помещается ГШТ. Наклонное положение трубки в волноводе обеспечивает при разряде равномерное внесение потерь на достаточной длине линии, благодаря чему достигается удовлетворительное согласование ГШТ с линией передачи в широком диапазоне частот. Полосковые генераторы шума представляют собой симметричную полосковую линию вдоль оси которой помещается газоразрядная шумовая трубка.

Основными параметрами, характеризующими шумовые газоразрядные генераторы, являются:

·        рабочий диапазон частот;

·        температура шума (относительная температура шума) или спектральная плотность мощности шума;

·        КСВН шумового генератора в рабочем режиме («горячий» прибор) и в выключенном состоянии («холодный» прибор);

·        потери, вносимые в тракт генератором шума в выключенном состоянии;

·        анодный ток ГШТ;

·        погрешность градуировки СПМШ генератора шума.

Интенсивность излучения ГШТ определяется главным образом электронной температурой плазмы . При помещении ГШТ в волноводную или коаксиальную генераторную секцию интенсивность шумового излучения генератора шума становится меньше  на значение потерь в генераторной секции. Потери, вносимые генератором шума в тракт, в основном определяются потерями в стенке трубки, линии передачи и в присоединительных элементах.

Между температурой шума генератора, электронной температурой плазмы, потерями, вносимыми в тракт включенным  и выключенным  генераторами, имеется связь, которая может быть выражена следующим соотношением:

 (4.9)

Как видно из (4.9), температура шума генератора и ее стабильность во многом определяются превышением потерь, вносимых в тракт в рабочем режиме, над потерями в выключенном состоянии. Поэтому при разработке генераторов шума или выборе прибора для измерения всегда стремятся к получению большого значения  и малых .

Частотная зависимость затухания, вносимого плазмой в СВЧ линию передачи, и потерь в генераторной секции, не оказывает значительного влияния на частотную характеристику СПМШ генераторов. Больший вклад вносит зависимость анодных колебаний в ГШТ от частоты. Соответствующим выбором анодного тока трубки можно достигнуть значительного снижения этой составляющей частотной зависимости СПМШ генераторов.

Генераторы шума на ГШТ обладают довольно высокой временной стабильностью. Значения шумовой температуры отдельных ГШТ отличаются друг от друга только в пределах случайной погрешности измерений. Газоразрядные шумовые трубки не имеют заметного старения от наработки. В связи с этим специально отобранные ГШТ используются в качестве меры СПМШ в эталонах и образцовой аппаратуре различных разрядов. Погрешности градуировки генераторов шума определяются в основном точностью измерительной аппаратуры.

4.3.3 Тепловые генераторы шума

В основу построения тепловых генераторов шума положен принцип излучения электромагнитной энергии нагретым «черным» телом. Основным элементом таких генераторов является согласованная нагрузка, физическая температура которой определяет спектральную плотность мощности шумового излучения:

 (4.10)

Уравнение (4.10) справедливо в области температур и частот, в которой выполняется соотношение:

, (4.11)

где h - постоянная Планка (6,62 ∙ 10-34 Дж/с);

Т - температура источника шумового излучения, К;

K - постоянная Больцмана (1,38-10-23 Дж/град);

f - частота радиоизлучения, Гц.

При невыполнении (4.11) спектральная плотность мощности излучения «черного» тела определяется законом Планка:

 (4.12)

Применение при расчетах соотношения (4.12) является сложным.

Известно, что существует с достаточной для расчета точностью (примерно 1 %) линейная зависимость между физической температурой тела и спектральной плотностью шумового излучения вплоть до температуры жидкого гелия (4 К) и частот длинноволновой части миллиметровых волн. В этом случае условием выполнения соотношения (4.10) является соотношение:

.

Тепловые генераторы применяются при создании эталонных и образцовых источников шума для передачи единицы спектральной плотности мощности шумового радиоизлучения рабочим прибором, а также при измерениях шумовых параметров малошумящих устройств.

Тепловые генераторы шума классифицируются:

·        низкотемпературные (НГШ);

·        высокотемпературные (ВГШ).

Низкотемпературные генераторы шума

НГШ в общем случае состоят из однородной линии передачи, нагруженной на согласованную нагрузку и помещенной в криостат с жидким охладителем. В качестве охладителей используются: жидкий азот, гелий и водород.

Для уменьшения притока тепла к охладителю через поперечное сечение линии передачи последние часто выполняются в виде коаксиальной линии с минимально тонкими стенками проводников. По сравнению с волноводными трактами, особенно больших сечений, размеры коаксиальной линии могут быть значительно меньше. Связь с волноводным трактом в этом случае осуществляется с помощью волноводно-коаксиального перехода.

Внешний и внутренний проводники коаксиальной линии выполняются из нержавеющей стали, что обусловлено ее весьма низкой теплопроводностью. Токонесущие поверхности проводников покрываются тонким слоем металла с высокой электропроводностью (серебро, золото).

В качестве согласованных нагрузок в генераторах используются резисторы или объемные коаксиальные нагрузки, выполненные из поглощающего материала. Для согласования нагрузки с трактом внутренняя поверхность внешнего проводника в нижней части, коаксиальной линии имеет специальную форму.

Особенностью эксплуатации низкотемпературных генераторов шума является то, что уровни охлаждающих жидкостей с течением времени непрерывно снижаются, а это приводит к изменению температуры вдоль нагрузки и линии передачи, а также вносимых в линию потерь. В каждой конструкции генератора применяются различные технические решения для стабилизации во времени температуры шума.

Полагая, что распределение температуры вдоль нагрузки равномерно и она имеет температуру охлаждающей жидкости и хорошо согласована с линией передачи (КСВН < 1.05), температуру шума на выходе генератора можно рассчитать по формуле:

, (4.13)


где Тн - температура нагрузки;

α(х) - коэффициент затухания единицы длины секции;

x1 - расстояние от выхода генератора до нагрузки.

Распределение температуры вдоль выходного тракта измеряется с помощью термопары при нескольких уровнях охлаждающей жидкости (после заливки, при минимальном уровне). Коэффициент затухания отдельных секций и нестабильность потерь в разъемах определяются экспериментально и затем рассчитываются с учетом изменения температуры секций.

Основными составляющими погрешности определения номинальной температуры шума на выходе генератора являются:

·        погрешность, вызванная неточным учетом неравномерности охлаждения нагрузки;

·        погрешность за счет неточности определения потерь в линии передачи и нестабильности потерь в разъемах;

·        погрешность, вызванная неопределенностью распределения температуры.

Высокотемпературные генераторы шума

Основу конструкции подобных генераторов составляет согласованная нагрузка, нагретая до относительно высокой температуры. Для хорошего согласования нагрузка выполняется в виде объемного и пленочного поглотителя. Непосредственно на волноводе с нагрузкой размещен нагреватель в виде нагревательных спиралей. За счет различной плотности намотки спирали вдоль волновода достигается необходимая равномерность распределения температуры вдоль поглотителя.

Волновод с нагревателем помещен в цилиндрический тепловой экран. Пространство между кожухом генератора и экраном, заполнено изолирующим материалом. В конструкции поглотителя размещены термопары для измерения и автоматического регулирования постоянства температуры.

При нагреве согласованной нагрузки она создает шумовое излучение. Спектральная плотность мощности шума такого генератора при одинаковой температуре вдоль поглотителя и отсутствии потерь в волноводе от поглотителя до выхода прямо пропорциональна абсолютной температуре поглотителя. Так как данные условия трудно выполнимы, аттестация высокотемпературных генераторов шума, так же как и низкотемпературных, производится экспериментально-теоретическим методом.

Основными составляющими погрешности ВГШ являются:

·        погрешность аппаратуры для автоматической стабилизации температуры ();

·        погрешность измерения температуры ();

·        погрешность за счет неравномерности температуры вдоль поглотителя ();

·        погрешность внесения поправки на потери в волноводе ().

Общая погрешность высокотемпературного генератора шума определяется суммой частных погрешностей, являющихся случайными и не зависящими друг от друга:

 (4.14)

Анализ абсолютных значений составляющих погрешности показывает, что наибольший вклад в общую погрешность вносит составляющая, обусловленная учетом потерь в волноводе. Уменьшение этой погрешности возможно лишь при изготовлении волновода из неферромагнитного материала с проводимостью, большей проводимости никеля. Наиболее подходящим для этой цели является золото. Особенно большое значение этот фактор приобретает при повышении рабочей частоты, когда потери волновода значительно возрастают.

Высокотемпературные генераторы шума используются в широком диапазоне частот - вплоть до коротковолновой части миллиметровых волн.


Информация о работе «Измеритель коэффициента шума»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 119959
Количество таблиц: 17
Количество изображений: 32

Похожие работы

Скачать
25438
1
0

noun метод биений 47 bell insulator noun юбочный изолятор 48 bias current noun ток смещения 49 bimodal distribution noun бимодальное распределение 50 binomial series noun биномиальный ряд 51 biquadratic equation noun уравнение четвертой степени 52 bisecting point of a segment noun середина отрезка 53 bivariate distribution noun двумерное распределение 54 block relay ...

Скачать
157070
33
0

... Аорта 30-60 Большие артерии 20-40 Вены 10-20 Малые артерии, артериолы 1-10 Венулы, малые вены 0.1-1 Капилляры 0.05-0.07 Ограничения, налагаемые на частотный диапазон существующих допплеровских измерителей скорости кровотока, обусловлены, в основном, двумя причинами: сложностью получения приемлемых параметров УЗ преобразователя, выполненного на основе пьезокерамики, для работы на ...

Скачать
83278
20
0

... устройств относительно не велика, соответственно по форме финансирования это могут быть и частные фирмы и госпредприятия. Величина закупок данного вида устройств не может быть высока, т.к. операция измерения отношения двух напряжений является весьма специфической, хотя как таковая она может быть использована в управлении различными техпроцессами на заводах. Приобретая разрабатываемое устройство, ...

Скачать
115712
40
9

... возможную реализацию точностных характеристик измерительного блока во времени. Функции М ( t ) и s ( t ) можно представить в виде: М ( t ) = А х t ; s ( t ), = sо + В х t, где sо - дисперсия погрешности измерения отношения сигнал/шум в момент начала эксплуатации. Выбираем: sо  = 0,5 Коэффициенты А и В выбираем по интенсивности внезапных отказов l å из соотношений ...

0 комментариев


Наверх