2.3 Выбор параметров обучения

 

Находим оптимальные параметры:

• скорость обучения в интервале от 0 до1

• момент в интервале от 0 до 1

• начальные веса от 0 до 1

 

1. Зависимость качества обучения от скорости обучения

Скорость обучения 0,1 0,5 0,7 1
Мин. ср. ошибка на тест. наборе 0,0019529 0,0006956 0,0005016 0,0002641

2.Зависимость качества обучения от момента

 

Момент 0,1 0,5 0,7 1
Мин. ср. ошибка на тест. наборе 0,0019529 0,0012411 0,0013824 0,5690943

 

3.Зависимость качества обучения от начальных весов

 

Начальный вес 0,1 0,3 0,7 1
Мин. ср. ошибка на тест. наборе 0,0010359 0,0019529 0,0032182 0,0031102

 

2.4 Оптимальные параметры обучения

Скорость обучения: 0,1

Начальный момент: 0,1

Начальные веса: 0,3

Модель - Сеть Ворда с двумя блоками в скрытом слое.

Структура НС:

1.                количество слоев: 4

2.                количество нейронов:

1)                 блок 1: 63

2)                 блок 2: 24

3)                 блок 3: 24

4)                 блок 4: 9

3. вид функций активации:

1)                 блок 1 – линейная [0;1]

2)                 блок 2 –гауссова

3)                 блок 3 –гауссова

4)                 блок 5 – логистическая.


2.5 Блок-схема алгоритма обучения


3. Анализ качества обучения

При данных оптимальных параметрах результаты применения сети можно представить виде таблицы

Вых1 Вых2 Вых3 Вых4 Вых5 Вых6 Вых7 Вых8 Вых9
R квадрат 1.0000 0.9992 0.9999 1.0000 0.9999 1.0000 0.9995 1.0000 1.0000
СКО 0.002 0.009 0.003 0.001 0.003 0.001 0.021 0.001 0.002
Относ СКО % 0.152 0.910 0.275 0.107 0.320 0.133 2.112 0.128 0.153
доля с ош <5% 10.417 12.500 13.194 9.722 9.722 11.111 10.417 9.722 12.500
доля с ош 5-10% 0 0 0 0 0 0 0 0 0
доля с ош 10-20% 0 0 0 0 0 0 0 0 0
доля с ош 20-30% 0 0 0 0 0 0 0.694 0 0
доля с ош >30% 0 0 0 0 0 0 0 0 0

Для проверки способностей к обобщению на вход сети подаются зашумленные последовательности входных сигналов. Процент зашумления показывает, какое количество битов входного вектора было инвертировано по отношению к размерности входного вектора.

Для зашумления 5% сеть выдает такие результаты:

Вых1 Вых2 Вых3 Вых4 Вых5 Вых6 Вых7 Вых8 Вых9
Rквадрат 0,9868 0,9884 0,9800 0,9831 0,9843 0,9830 0,9814 0,9855 0,9838
СКО 0,036 0,034 0,044 0,041 0,039 0,041 0,043 0,038 0,040
Относ СКО % 3,616 3,385 4,448 4,089 3,942 4,096 4,289 3,781 3,998
доля с ош<5% 11,111 0 0 0 0 0 0 0 0
доля с ош5-10% 0 11,111 11,111 0 0 11,111 0 11,111 11,111
доля с ош 10-20% 0 0 0 11,111 11,111 0 11,111 0 0
доля с ош 20-30% 0 0 0 0 0 0 0 0 0
доля с ош>30% 0 0 0 0 0 0 0 0 0

Далее мы подавали различное количество инвертированных битов.

В таблице представлена зависимость количества инвертированных битов от количества правильных ответов на выходе

Количество инвертированных битов Количество верных ответов на выходе
50 0
25 2
13 9
19 6
16 7
15 8
14 8

Таким образом мы выявили критическое количество зашумленных данных = 16 на каждый входной вектор.

Это соответствует 20% зашумления. При большем зашумлении входных данных сеть не может отдать предпочтение одной цифре, причем с увеличением зашумления количество таких букв растет.

Результаты сети при критическом зашумлении:

Вых1 Вых2 Вых3 Вых4 Вых5 Вых6 Вых7 Вых8 Вых9
R квадрат 0,7193 0,8274 0,6583 0,7303 0,7928 0,6981 0,9135 0,8702 0,7746
СКО 0,028 0,017 0,034 0,027 0,020 0,030 0,009 0,013 0,022
Относ СКО % 16,650 13,057 18,369 16,322 14,304 17,268 9,243 11,321 14,922
доля с ош <5% 0 0 0 0 0 0 0 0 0
доля с ош 5-10% 0 0 0 0 0 0 0 0 0
доля с ош 10-20% 0 11,111 0 0 11,111 0 0 0 0
доля с ош 20-30% 0 0 0 0 0 0 11,111 0 11,111
доля с ош >30% 11,111 0 11,111 11,111 0 11,111 0 11,111 0

Судя по анализу качества обучения, сеть хорошо справляется при 20% зашумлении.

Это говорит о том что у сети неплохой потенциал для обобщения.


Выводы

В ходе данной курсовой работы были получены навыки моделирования нейронных сетей, а также была решена частная задача моделирования нейронной сети для классификации римских цифр. Исходными данными для сети являлись изображения римских цифр, представленные виде матриц, размерностью 7х9.

Обученная нейронная сеть хорошо себя показала при 20% уровне шума. Для увеличения этого показателя нужно снизить риск возникновения критических шумов. Этого можно достигнуть путем увеличения размерности сетки.


Список использованных источников

1         Стандарт предприятия СТП 1–У–НГТУ–98

2         Круглов В.В., Борисов В.В. Искусственные нейронные сети. Теория и практика. – М.: Горячая линия – Телеком, 2001. – 382 с.:ил.

3         Электронный учебник по NeuroShell 2

4         Каллан Р. Основные концепции нейронных сетей

5         Ресурсы сети Интернет


Информация о работе «Классификация римских цифр на основе нейронных сетей»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 25216
Количество таблиц: 15
Количество изображений: 3

Похожие работы

Скачать
308601
37
3

... производительных сил, тем быстрее повышается Б. населения. В еще большей степени Б. связано с эффективностью социально-экономической политики в данном обществе. Информатика как наука. Предмет и объект прикладной информатики. Системы счисления Инфоpматика — это основанная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и ...

Скачать
102392
9
85

... мозгу (1), где через вставочный нейрон передаются на эфферентные волокна (эфф. нерв), по которым доходят до эффектора. Пунктирные линии - распространение возбуждения от низших отделов центральной нервной системы на ее вышерасположенные отделы (2, 3,4) до коры мозга (5) включительно. Наступающее вследствие этого изменение состояния высших отделов мозга в свою очередь воздействует (см. стрелки) на ...

Скачать
87917
0
0

... также, сколь прямолинейно философы подходят к биологическим проблемам. В связи с этим мне особенно нравится употребление Декартом слова "просто" если бы так оно и было... Как следует понимать эти картезианские метафоры памяти? Возможно, Декарт считал свою теорию таким же точным описанием процессов, происходящих в мозгу, каким для Гарвея было сравнение сердца с насосом. Но мне кажется, что мы ...

Скачать
70075
0
9

... и аппаратной реализации, выполненные на этом языке описания, переводятся на более подходящие языки другого уровня. 4. Экспертные системы (ЭС), их структура и классификация. Инструментальные средства построения ЭС. Технология разработки ЭС 4.1 Назначение экспертных систем В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление ...

0 комментариев


Наверх