2. Оптическая длина пути
1. Оптической длиной пути называется произведение геометрической длины d пути световой волны в данной среде на абсолютный показатель преломления этой среды n.
s=nd.
2. Разность фаз двух когерентных волн от одного источника, одна из которых проходит длину пути в среде с абсолютным показателем преломления , а другая – длину пути в среде с абсолютным показателем преломления :
где , , λ – длина волны света в вакууме.
3. Если оптические длины пути двух лучей равны, , то такие пути называются таутохронными (не вносящими разности фаз). В оптических системах, дающих стигматические изображения источника света, условию таутохронности удовлетворяют все пути лучей, выходящих из одной и той же точки источника и собирающихся в соответствующей ей точке изображения.
4. Величина называется оптической разностью хода двух лучей. Разность хода связана с разностью фаз :
.
5. При разность фаз ; удлинению (или укорочению) оптической длины пути одной из волн относительно другой на соответствует запаздывание (или опережение) первой волны на π. При суперпозиции таких волн их амплитуды вычитаются друг от друга, и в случае равенства амплитуд обеих волн амплитуда результирующей волны равна нулю.
6. Наблюдение интерференции возможно лишь при не слишком больших разностях хода . Если (τ – средняя продолжительность одного акта излучения света атомом источника, с – скорость света в вакууме, а τс – средняя продолжительность цуга волн в вакууме), то накладывающиеся волны заведомо некогерентны и не интерферируют. Условия наблюдения интерференции при оптической разности хода
т.е. для осуществления интерференции при больших значениях необходима сильная монохроматизация света.
3. Интерференция в тонких плёнках
1. При наблюдении интерференции монохроматического света, отражённого в вакуум от плоскопараллельной пластинки (рис.3.), оптическая разность хода интерферирующих лучей
=n(AD+DC)-BC+λ/2=
=
где h – толщина пластинки, n – её абсолютный показатель преломления, i – угол падания лучей на пластинку, r – угол преломления лучей в ластинке. Дополнительная разность хода связана с отражением света от передней поверхности пластинки (оптически более плотной среды), т.е. с изменением при отражении фазы волны на π.
S S
O
B O
i i
A C
h
r r
D
Рис.3.
2. Условия максимумов и минимумов для интерференционной картины, образуемой когерентными волнами, отражёнными от обеих поверхностей пластинки:
Здесь k=2m, где m – целое, для минимумов и k=2m+1 для максимумов. Если отражение от обеих поверхностей пластинки происходят с потерями λ./2 (или без них), то интерференционная картина смещается на полполосы, т.е. значения k=2m соответствуют интерференционным максимумам, а k=2m+1 – минимумам.
3. При освещении плоскопараллельной пластинки параллельным пучком лучей белого света пластинка приобретает в отражённом свете цветную окраску. В соответствии с условием п.6. интерференцию в белом свете можно наблюдать лишь на очень тонких пластинках (плёнках), толщина которых не превосходит 0.01 мм. В монохроматическом свете можно наблюдать интерференцию и на значительно более толстых пластинках.
4. Если параллельный или почти параллельный пучок лучей монохроматического света падает на плёнку, толщина h которой неодинакова в разных местах, то в отражённом свете на верхнеё поверхности плёнки видны тёмные и светлые интерференционные полосы. Эти полосы называют полосами равной толщины , так как каждая из них проходит через точки с одинаковыми значениями h. Полосы равной толщины, локализованные на поверхности плёнки, можно наблюдать также и на экране, если на него спроецировать верхнюю поверхность плёнки с помощью собирающей линзы. В белом свете наблюдается система цветных интерференционных полос равной толщины.
5. При интерференции на прозрачном клине полосы равной толщине параллельной ребру клина. Ширина интерференционных полос при угле падения i=0
где - угол при вершине клина (, n – абсолютный показатель преломления вещества клина.
В случае протяжённого источника света интерференционная картина наблюдается только от той части клина, вблизи его вершины, для которой , где i – угол падения, - угол, под которым виден протяжённый источник из точки клина, соответствующий данном h.
6. При интерференции света в воздушном зазоре между плоским чёрным зеркалом и плотно прижатой к нему плоско-выпуклой линзой (рис.4), свет падает нормально на плоскую поверхность линзы, параллельную плоскости чёрного зеркала.
R
P
Рис.4.
Наблюдается система полос равной толщине воздушного зазора, имеющих вид центрических колец (кольца Ньютона). Центры колец совпадают с точкой соприкосновения линзы и зеркала. В отражённом монохроматическом свете радиусы светлых и тёмных колец равны:
и
где R – радиус крутизны нижней поверхности линзы, - длина волны света в вакууме (воздухе), m=1,0,2,… В центре интерференционной картины находится тёмное пятно.
В белом свете различным длинам волн λ соответствуют разные q, и получается система цветных колец со значительным наложением одних цветов на другие; при больших m интерференционная картина неразличима для глаза.
7. При освещении плоскопараллельной пластинки монохроматическим сходящимся или расходящимся пучком света каждому значению угла падения I соответствует своё значение оптической разности хода . Интерференционная картина наблюдается в фокальной плоскости собирающей линзы, установленной на пути света, отражённого пластинкой. Для монохроматического света интерференционная картина имеет вид чередующихся тёмных и светлых полос. Каждая из этих полос соответствует определённому значению углу падения i, поэтому их называют полосами равного наклона. Полосы равного наклона локализованы в бесконечности. При освещении плоскопараллельной пластинки белым светом полосы равного наклона различно расположены в зависимости от λ и являются цветными. По мере возрастания порядка интерференции m картина смазывается.
8. В случае интерференции N когерентных волн с одинаковыми амплитудами и одинаковыми сдвигами по фазе между i-ой (i - 1)-й волнами ( не зависит от i) амплитуда A и интенсивность I результирующей волны равны:
Где - интенсивность каждой из интерферирующих волн.
ЛИТЕРАТУРА
1. Мирошников М.М. Теоретические основы оптико-электронных приборов: учебное пособие для приборостроительных вузов. -- 2-е издание, перераб. и доп.—Спб.: Машиностроение,20033 -- 696 с.
2. Порфирьев Л.Ф. Теория оптико-электронных приборов и систем: учебное пособие.— Спб.: Машиностроение,20033 -- 272 с.
3. Кноль М., Эйхмейер И. Техническая электроника, т. 1. Физические основы электроники. Вакуумная техника.—М.: Энергия, 2001.
... усиливается, ¾ пучностями. Оглавление и список литературы. Свет ¾ электромагнитная волна……………………………………..2 Скорость света…………………………………………………………2 Интерференция света………………………………………………….3 Стоячие волны…………………………………………………………3 1. 1. Физика 11 (Г.Я.Мякишев Б.Б.Ьуховцев) 2. 2. Физика 10 (Н.М.Шахмаев ...
... света. Последователи Ньютона представили Ньютона как безоговорочного сторонника корпускулярной концепции света. Авторитет имени Ньютона, таким образом, в данном случае сыграл негативную роль - задержал развитие волновой теории света.(2) Сформировавшиеся в предшествующее столетие корпускулярная и волновая концепция света в XIX веке продолжили ожесточенную борьбу. Первая опиралась на авторитет ...
... D = 2(AC – AB) = 2l, где l – расстояние между зеркалом M2 и мнимым изображением M1¢ зеркала M1 в пластинке P1. Таким образом, наблюдаемая интерференционная картина эквивалентна интерференции в воздушной пластинке толщиной l. Если зеркало M1 расположено так, что M1¢ и M2 параллельны, то образуются полосы равного наклона, локализованные в фокальной плоскости объектива O2 и имеющие форму ...
0 комментариев