1.4.2. Новые эксперименты по эффектам, вызванным электрическим полем

Описанные выше эффекты элек­трофотолюминесценции были предметом многочисленных исследований, и хотя объяснение их во многом остается еще сомнительным, основные эксперименталь­ные результаты представляют для нас интерес. На рис. 5(a) пунктирная линия соответствует случаю, когда после первоначального всплеска наблюдается остаточное увеличение яркости. Дестрио с сотрудниками [36] установили, что это происходит в некоторых ZnS-CdS- и ZnS-фосфорах, возбуждаемых рентгеновскими лучами и находящихся в переменном поле. Для экспериментальных целей эти порошкообразные фосфоры приготовлялись в виде суспензии в прозрачном диэлектрике. В случае постоянного поля эффект был только временным вследствие высокой проводимости фосфора. В некоторых случаях коэффициент усиления яркости достигал трех. При этом обычная форма дэшеновского гашения наблюдалась в том случае, когда электрические поля прикладывались к образцам во время облучения последних не рентгеновскими лучами, а ультрафиолетовым светом. Таким образом, эффекты, обусловленные наличием поля, оказываются чувствительными к способу оптического возбуждения.

На рис. 5(в) в показаны типичные результаты для зависимости эффектов усиления и гашения (после первоначального всплеска) от напряженности поля. О существовании максимума, за которым следует спад, сооб­щил также Штейнбергер с сотрудниками [32]. Когда внешнее поле прикладывалось в отсутствие возбуждающего облучения, никакой люминесценции не наблюдалось. Поэтому эффект усиления внешне (но не принципиаль­но) отличается от явления фотоэлектролюминесценции. Гобрехт и Гумлих описали интересный фосфор, содержащий марганец, в котором под действием электрического поля происходило усиление желтой и одновременное ослабление голубой полос фотолюминесценции [37].

Сложная природа явлений этой группы иллюстри­руется еще тем фактом, что влияние электрического возбуждения может сказываться в течение долгого вре­мени (например, нескольких часов) и что оно может обнаруживаться по действию вторичного оптического возбуждения. Насколько известно, систематические эксперименты по изучению электрофотолюминес­ценции монокристаллических образцов сульфида цинка еще не проводились, хотя относительно сульфида кадмия получены некоторые данные [38]. Подобные экспери­менты совершенно необходимы, чтобы составить полное представление об этих явлениях. Их можно было бы строго объяснить, если бы более полно были изучены явления электрической люминесценции, которые проис­ходят без оптического возбуждения. Дальнейшие ссылки на работы по электрофотолюмнесценции можно найти в обширной библиографии, составленной Айви [39].

1.4.3. Свечение при одновременном действии поля и света

При освещении люминофоров и одновременном воздействии на них электрического поля, яркость свечения обычно не равна сумме яркостей, получающихся при раздельном действии света или поля.

Иногда свечение называют фотоэлектролюминесценцией, если наблюдается влияние освещения на ЭЛ, и электрофотолюминесценцией, если слабое электрическое поле только изменяет яркость фотолюминесценции (ФЛ). В общем случае, однако, оба явления присутствуют одновременно, при одних и тех же напряжениях, поэтому в дальнейшем эти явления нами обозначаются одним термином «фотоэлектролюминесценция» (ФЭЛ). Явления, смежные с ЭЛ, интересны не только сами по себе, но и с точки зрения расширения сведений об условиях действия поля в кристаллах, так как они проявляются как при больших напряжениях, при которых уже наблюдается ЭЛ, так и при малых напряжениях, недостаточных для возбуждения ЭЛ.

Помимо света из области собственного или примесного поглощения, вторым возбуждающим агентом могут служить также α-, γ-, рентгеновские или катодные лучи.

Если Вфэл -яркость свечения при одновременном действии поля и света, а Вфл и Вэл - яркость при возбуждении люминофора только светом и только полем, то добавочное свечение при двойном воз­буждении удобно характеризовать следующей величиной:

ΔB = Вфэл - (Вфл + Bэл).

В общем случае ΔВ может быть как положительным, так и отрицательным, т. е. может наблюдаться ослабле­ние свечения или его усиление (рис. 6). При малых полях, при которых еще нет заметной ЭЛ наблюдается только тушение фотолюлминесценции, а при более высо­ких - преобладает усиление свечения, хотя тушение присутствует и при этих напряжениях. Таким образом, при достаточно больших полях общее изменение яркости ΔВ может состоять из двух частей, одна из которых связана с изменением ФЛ в электрическом поле, а другая - с изменением ЭЛ при освещении:

 ΔВ=ΔВфл+ΔВэл

При малых напряжениях V, второе слагаемое отсутствует, и благодаря тушению, ΔВ отрицательно. При более высоких V преобладает ΔВэл, которое в зависимости от типа образца и условий опытов может быть как положительным, так и отрицательным. В результате суммарное ΔВ также может иметь различные знаки. Все это приводит в общем случае к большомy разнообразию и запутанности наблюдающихся явлений.

Свойства ФЭЛ изучались как на электро-, так и фото­люминофорах различного состава и вида (порошки, моно­кристаллы, пленки)[40-42]. В частности, кривые Вфэл (V), сходные по форме с приведенными на рис. 6, были получены для пленок ZnS:Mn [43].

 При включении или выключении поля наблюдаются различного рода переходные явления. Так, если люмино­фор в обычной ячейке возбуждается ультрафиолетовым светом, то включение небольшого переменного напря­жения приводит сначала к вспышке (эффект Гуддена и Поля), затем к временному значительному тушению и, далее, к постепенному уменьшению тушения до стационарного уровня. Выключение напряжения вновь может сопровождаться вспышкой с последующим отно­сительно медленным восстановлением первоначальной яр­кости ФЛ.

В дальнейшем рассматриваются основные свойства установившегося свечения при двойном возбуждении люминофоров переменным полем и ультрафиолетовым светом (365 нм), причем имеется в виду средняя по вре­мени яркость свечения. Данные о тушении и усилении свечения относятся к одним и тем же порошкообразным электролюминофорам, что позволяет сопоставить свойства трех явлений, связанных с действием поля и облегчает рассмотрение вопроса о происхождении этих явлений.


Информация о работе «Исследование влияния частоты переменного электрического поля на яркость люминесценции различных люминофоров»
Раздел: Физика
Количество знаков с пробелами: 67423
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
26449
2
17

... и возможность работы при низких температурах. Существует много конструкций ГИП переменного тока, одна из них приведена на рисунке (рис. 2.1). В основу ГИП переменного тока положена трехэлектродная структура газоразрядной ячейки. Рис. 2.1 Два так называемых дисплейных электрода (ионизирующий и развертки) - полупрозрачные, они нанесены на поверхность внешнего стекла, ...

Скачать
56639
3
6

... . Это дает возможность элементного анализа вещества: определение количества атомов каждого элемента, входящего в состав образца. ГЛАВА 2. ОБЛАСТИ ПРИМЕНЕНИЯ ФЛУОМЕТРИИ В АНАЛИЗЕ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ Сегодня люминесцентный метод анализа охватывает широкий круг методов определения разнообразных объектов от простых ионов и молекул до высокомолекулярных соединений и биологических объектов. ...

Скачать
35272
1
10

... . Развитие способов передачи изображений и измерительной техники сопровождалось дальнейшей разработкой и усовершенствованием различных электровакуумных приборов, радиоламп и электронографических приборов для осциллографов, радиолокации и телевидения. Рентгеновская трубка Электрический ток в вакууме применяют для получения рентгеновских лучей. Рентгеновские лучи испускаются любым веществом, ...

Скачать
60330
12
39

... 4 Содержание отчета Схема включения однофазного счетчика в сеть. Схема включения трехфазного счетчика (п.7). Таблица с результатами измеренных и вычисленных значений. 3. Выводы о результатах поверки счетчика. Контрольные вопросы. 1. Единицы измерения электрической энергии. 2. Основные части счетчика и их назначение. 3. Принцип работы индукционного ...

0 комментариев


Наверх