Гутнер Г.

1 Имя и действительность

Изучая структуру теоремы, мы оставили без внимания одно важное обстоятельство. Актуализируя впервые возможное понятие, т.е. предъявляя в экспозиции единичный действительный объект, мы не просто нарисовали его, но еще произнесли при этом: "Пусть ABC - треугольник".

Приведенная фраза указывает, прежде всего, на то, какое возможное понятие было актуализировано в экспозиции. Но кроме того, она еще называет объект, появившийся при этом событии. Выделение соответствующей понятию единичной конструкции сопровождается именованием. Последнее можно считать (в данном примере) неизбежным следствием актуализации. Единичный предмет может быть назван и тем отличЁн от других единичных предметов. Однако, поскольку по поводу этого единичного предмета разворачивается некий дискурс, он не только может, но и должен быть назван. Имя призвано указывать на этот предмет в ходе дальнейшего дискурса. Имя свидетельствует о наличности этого предмета, его постоянной предъявленности рассуждению. Иными словами, имя есть коррелят действительности предмета (или объекта - что в данном случае более точно). Можно считать, что именование неизбежно происходит при актуализации, поскольку даже если мы не придумаем для объекта особого имени (как, например, ABC), то мы все равно должны будем сопровождать его появление каким-то указательным местоимением (этот треугольник) или хотя бы жестом. В противном случае актуализация просто не будет замечена. Имя фиксирует актуальный объект для последующего дискурса. К нему происходят многократные обращения, т.е. оно само постоянно воспроизводится в виде некоторого следа. Но многократность воспроизведения означает наличие схемы, по которой это имя произведено и благодаря которой оно может быть опознано как одно и то же при разных воспроизведениях. К имени, следовательно, мы должны применить тот же набор категорий, который применялся к именуемому объекту. Во всяком случае, написанное или произнесенное имя само является действительным объектом, а именование - событием, актуализацией, предъявлением этого единичного объекта. Впрочем, пока мы обязаны констатировать некую несамостоятельность имени. Дискурс разворачивается не о нем. Более того, не ставится вопрос о его возможности. Оно возможно всегда, когда возможен обозначаемый им предмет. Хотя возможно оно и само по себе, и вскоре мы увидим насколько это важно. Пока что отметим еще, что для имени в любом случае важна необходимая связь элементов. Назвав треугольник ABC, мы в дальнейшем не можем поставить на место какой-либо из этих букв - другую. Это сразу приведет к разрушению дискурса.

Итак, оставаясь зависимыми от именуемого объекта, имена все же обретают собственную объективность. Эта объективность состоит в том, что они конструируются согласно определенным общим правилам и появляются в дискурсе как действительные объекты. Это особенно ясно видно при фиксации в дискурсе геометрических конструкций, появившихся в результате определенных операций над более простыми конфигурациями. Так, например, построив угол, равный сумме двух других, названных a и b, мы конструируем новое имя: a+b. Такое конструирование может оказываться важной составляющей для тех двух частей теоремы, которые описывают единичный объект - для детерминации и доказательства. Причем конструирование имен может породить новый дискурс, разворачиваемый как правило в пределах двух названных частей. Здесь могут фигурировать общие суждения, относящиеся к именам. Таковы, например, общие посылки в силлогизмах 4 и 5 в 2 третьей главы.

Однако, обладая некой объектностью, имена все же не являются здесь объектами в полном смысле слова. Пока мы не можем определить особого понятия, которое бы актуализировалось с помощью имени. Они остаются как бы соучастниками актуализации тех понятий, которые являются основными для дискурса, т.е. понятий геометрических объектов. Потому событие именования представляется здесь вторичным по отношению к событию построения. Однако способность имени превращаться в самостоятельный объект оказалась небезразличной для других разделов математики.

2 Математический дискурс, основанный на именовании

Как самостоятельный объект имя выступает прежде всего в алгебре. Чтобы убедиться в этом, следует рассмотреть построение алгебраической теоремы и попытаться найти в ней те части, которые присутствовали в теореме геометрии. Легко убедиться, что алгебраическая теорема действительно поддается тому же самому расчленению. Однако в ней обнаруживаются интересные особенности.

Рассмотрим пример. Известная теорема утверждает, что любой полином с комплексными коэффициентами может быть представлен в виде произведения линейных множителей, количество которых равно степени полинома.

Приведенное общее утверждение естественно рассматривать как protasis теоремы. Мы имеем дело с предположением о возможности общего понятия, которое должно быть реально синтезировано в ходе доказательства. Естественный ход, который в любом учебнике алгебры является прологом к доказательству, полностью повторяет экспозицию и детерминацию евклидовой теоремы. Ход этот осуществляется примерно так:

Пусть имеется полином a0+a1 z+....+an zn , тогда

a0+a1 z+....+an zn = an (z-z1)...(z-zn),

где z1,..zn - комплексные числа.

Очевидно, что все использованные в приведенной записи буквы суть имена чисел, которые могут быть подставлены вместо них в выражение. Но из этих имен создана совершенно самостоятельная конструкция, единичный объект, построенный по определенным правилам сообразно своему понятию. Как и в геометрии произведен переход от общего утверждения к единичному предмету. Все последующие действия будут состоять в построении новых объектов более сложной конфигурации, состоящих из символов, т.е., в конечном счете из имен. Однако тот факт, что каждый символ, входящий в конструкцию, может в принципе указывать на какое-то число, не особенно важен для алгебры.

Дальнейшее развертывание теоремы обнаруживает еще одно знаменательное отличие от геометрии. В ней, на первый взгляд, нет дополнительного построения. После экспозиции и детерминации сразу же следует доказательство, которое, как и в геометрии, есть процедура, оперирующая с именами объектов. Но что представляет собой эта процедура в данном случае? Это - последовательность алгебраических выкладок, совершаемых по определенным правилам. Иными словами - это конструирование знаковых объектов, связанных в производимой последовательности формул согласно законам алгебры. В конечном счете, все доказательство оказывается созданной по правилам единой конструкцией, в которую утверждение теоремы (точнее, детерминация) включено в качестве составной части. Следовательно, доказательство и дополнительное построение в данном случае попросту совпадают. Текст доказательства и есть здесь та конструкция, которая актуализирует интересующее нас понятие (то понятие, возможность которого предполагалась в утверждении теоремы).

Обращаясь к кантовскому разделению способностей, мы должны констатировать, что проведение доказательства (наряду с воображением и рассудком) проводится при помощи рефлектирующей способности суждения. Построение необходимой последовательности выкладок требует некоторой обобщающей догадки, благодаря которой все фиксированные в экспозиции и детерминации объекты, а также уже доказанные утверждения (т.е. ранее сконструированные объекты), нужные для доказательства, оказываются объединены в одной конструкции.

Дискурс, разворачиваемый в арифметике, оказывается значительно сложнее алгебраического. Здесь можно выделить три типа конструируемых объектов. Прежде всего, арифметика всегда подразумевает некоторую пространственную структуру, на которую можно непосредственно указать, описывая любую арифметическую операцию. Арифметическое утверждение также можно разложить на выделенные нами ранее части, указывая при этом в экспозиции на единичный протяженный объект, создаваемый согласно заданному правилу. В знаменитом кантовском примере - о суммировании чисел пять и семь - мы можем построить соответственно пять и семь точек или пять и семь последовательных отрезков на числовой прямой (и даже положить рядом пять и семь яблок). С помощью пространственных конструкций мы можем демонстрировать сложение, вычитание, деление, умножение, вводить отрицательные, дробные и даже иррациональные числа. См. примечание 1) Но каждая такая операция, представляющая собой актуализацию определенного арифметического понятия, предполагает также и именование конструируемых объектов. Пользуясь определенной системой счисления, мы присваиваем протяженным конструкциям имена, являющиеся названиями чисел. Но пользуясь такими именами вкупе с названиями операций, мы производим конструкции совершенно иного рода. Мы создаем, прежде всего, сами числа, сообразуясь с правилами, заданными системой счисления. Мы создаем выражения, содержащие эти числа, и даже длинные тексты, включающие подчас весьма специфические конфигурации. В этом конструировании мы можем продвигаться достаточно далеко, вовсе не обращаясь к соответствующей протяженной конструкции, а используя наглядные представления совершенно иного вида.

Многие авторы (см., например, [64], [80], [83]) говорят об абстрактности арифметики, имея в виду отвлечение от протяженных конфигураций и их особенных признаков при определении числовых операций. Однако, важно иметь в виду, что в арифметическом дискурсе происходит конструирование совершенно конкретного единичного объекта. Несмотря на то, что правила этого конструирования существенно отличаются от геометрических, работа всех трех способностей субъекта остается той же самой. При рассмотрении любого арифметического утверждения воображение строит объект, согласно правилам, предписанным рассудком, а проведение достаточно сложного вычисления требует и обобщающей догадки (т.е. дополнительного построения), которая делается способностью суждения. (См. примечание 2)

Однако арифметический дискурс включает и именование иного рода, нежели обозначение протяженных конструкций с помощью чисел и числовых операций. Очень часто при формулировке каких-либо утверждений о числах пользуются буквенными обозначениями. В таком случае, вместо единичного объекта, который следовало бы предъявить при экспозиции, возникает знаковая конструкция, являющаяся именем того объекта, о котором идет речь. Здесь возникает несколько странных особенностей. С одной стороны знаковая конструкция в арифметике замещает не один, а множество подобных числовых объектов. Она носит общий характер, причем эту общность следует понимать не как общность абстракции, а как общность структуры. Если, например, вместо нечетного числа мы пишем '2n+1', то вводим принцип порождения всех объектов, соответствующих заданному общему понятию. С другой стороны, вводя имена, мы пользуемся ими и построенными из них выражениями как единичными объектами. Работая с именами, мы производим пространственно определенные конструкции, создаваемые воображением и представимые в созерцании. Сам способ введения этих имен полностью соответствует экспозиции в геометрической теореме. Так, сформулировав общее утверждение о свойствах целых чисел, мы, переходя к его доказательству, произносим: "Пусть n - целое число, тогда" и т.д. Дальнейший дискурс вообще ничем не отличается от алгебраического. Однако при доказательстве алгебраической теоремы конструируется объект того же вида, что и любой другой, для которого справедлива теорема. Разумеется, вместо a0+a1 z+....+an zn можно написать b0+b1 x....+bm xm ,но ничего принципиально иного здесь появиться не может. Точно так же при доказательстве геометрической теоремы мы могли использовать остроугольный треугольник и считать потом, что она справедлива также и для тупоугольного. В арифметике же буквенные выражения есть имена числовых (или даже протяженных) объектов, которые, однако, вообще не конструируются в дискурсе. Конструируется совершенно не тот объект, о котором ведется рассуждение. "Тот" объект, конечно же может быть в любой момент предъявлен, но в дискурсе он не присутствует.

Таким образом в арифметике происходит именование непостроенного объекта, некая квазиактуализация понятия. Работа со знаковой конструкцией в арифметике подобна работе с такой же конструкцией в алгебре, но в алгебре эта конструкция представляет собой одновременно и предмет исследования, а в арифметике только имя этого предмета. Ее нужно рассматривать как некую систему пустых мест, на которые должны быть поставлены любые объекты определенного вида. Тот факт, что вместо объектов можно работать с их именами, организованными в определенную структуру, обнаруживает, что для развертывания дискурса нам важны не сами эти объекты, а отношения между ними. Но немаловажно еще и то, что развертывание дискурса приводит к объективизации отношений. Наше рассуждение обязательно должно быть отнесено к остенсивно определяемому предмету, к пространственной конструкции - протяженной или знаковой.(См. примечание 3)

Итак именование представляет собой актуализацию предмета даже тогда, когда сам этот предмет не конструируется. Такой ход характерен не только и даже столько для арифметики, сколько для тех сфер математики, которые пытаются работать с бесконечными предметами. Введение предельных понятий, например, в том и состоит, что для объекта, точнее квазиобъекта, неконструируемого предмета находится имя, актуализирующее его в дискурсе. При этом дальнейшее развертывание дискурса оказывается все же вполне конструктивной процедурой, но строится в этой процедуре не предмет исследования, а последовательность выражений, интерпретируемых как высказывания об этом предмете. Например, обозначив предел числовой последовательности буквой 'a', мы можем строить знаковую конструкцию по правилам, предписанным определением предела. Любая теорема о существовании предела последовательности будет в этом случае предположением возможности названного понятия. Но чтобы показать эту возможность, нужно конструировать не саму эту последовательность вместе с ее пределом, а рассуждение о пределе, записываемое по определенным формальным правилам.


Информация о работе «Именование и существование в структуре дискурса»
Раздел: Философия
Количество знаков с пробелами: 50399
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
26758
0
0

... дискурса в чисто лингвистических терминах, без использования литературоведческих методов, неадекватно предмету: необходим более общий понятийный аппарат – политологической филологии. Особенно ясно это видно, когда пытаются охарактеризовать эффективность и полемичность политического дискурса. 1. Оценочность и агрессивность политического дискурса Поскольку термины политический и моральный ...

Скачать
152637
3
0

... реального времени. Замысел автора раскрывается только в последнем финальном эпизоде. 5. Истолкование (интерпретация) рассматриваемого текста в аспекте избранного типа его филологического анализа Автор рассказа «Тургеневская девушка» Сергей Стрельцов представляет нам историю сироты – американки Сьюзи, поэтессы влюбленной в русскую « печально беспечальную» литературу и желающую научиться ...

Скачать
62969
0
0

... , формирует его главную тему – макротему. “Связность текста выступает как результат взаимодействия нескольких факторов”, - отмечают В.А. Бухбиндер и Е.Д. Розанов. Исследование текста как самостоятельного лингвистического объекта, обладающего особыми чертами смысловой и структурной организации, позволяет достичь более полной обозримости языка – сложной, многоярусной иерархической структуры, ...

Скачать
54538
0
0

... и с логическим выводом. В третьей главе “Анализ употребления профессиональных фразеологизмов и терминологизмов в когнитивном аспекте” осуществляется анализ использования ФЕ профессионального и терминологического происхождения в современном английском и русском дискурсах. Фразеологизация терминов и профессиональных устойчивых сочетаний в современном английском и русском языках продиктована ...

0 комментариев


Наверх