3 Математическое существование в философии Канта. Предварительное рассмотрение

В интерпретации Беркли субстанция не есть идея, а потому не может быть предметом познания. Иными словами, субстанция - только субъект, но не объект знания. Осмысление проблемы в субъект-объектной терминологии в полной мере осуществлено Кантом, который, отчасти, вернул слову "субстанция" аристотелевский смысл.

То, что Декарт и Беркли (а также и другие философы Нового времени) называли мыслящей субстанцией, Кант назвал субъектом, подробно рассмотрев его логическую структуру. При этом он настаивал, что мыслящее Я нельзя называть субстанцией. Последняя есть категория, предназначенная для того, чтобы судить об объекте мысли. Эта категория позволяет судить о явлениях, как о способах обнаружения некоторого неизменного основания. "Схемой субстанции служит устойчивость реального во времени, т.е. представление о нем, как о субстрате эмпирического определения времени вообще, который, следовательно, остается, тогда как все остальное меняется" (B183 - ссылки на "Критику чистого разума" делаются в соответствии с пагинацией второго издания (1787 года), которая дается в большинстве русских переводов). Субстанция, таким образом, есть устойчивое основание того, о чем ведется рассуждение. Всякое суждение сказывается о субстанции, как о носителе выражаемых этим суждением свойств. Такая трактовка в самом деле в чем-то близка Аристотелю. Однако особого рассмотрения требует вопрос о том, как производится суждение и как, в конечном счете, строится рассуждение.

Суждение о предмете означает синтез, производимый согласно априорным условиям. Такой синтез состоит в установлении субъектом мышления связи данных представлений. Связь представлений в суждении не может быть дана, а может быть только создана субъектом (B130). В Главе 3 мы подробно разберем вопрос о синтезе в применении к математике. Сейчас лишь обратим внимание на то, что Кант выделяет два рода синтеза - "интеллектуальный" и "фигурный" - и, соответственно, два плана дискурса: рассудочный синтез общих понятий и синтез способности воображения, состоящий в конструировании единичных предметов.

Рассудочное мышление состоит в создании субъектом единства в своих представлениях. Поэтому предмет, чтобы стать объектом мышления, должен быть сконструирован субъектом. (См. примечание 6)Это конструирование может быть понято в том числе и в самом прямом смысле, как сборка конструкции из набора элементов. Последнее относится прежде всего к математике. Алгебраическая формула, равно как и геометрическая фигура, становятся объектами рассуждения, будучи сконструированы продуктивной способностью воображения, т.е. собраны в пространстве из более простых фигур, формул или знаков. Поэтому всякий математический предмет существует постольку, поскольку он сконструирован. Вопрос о существовании, таким образом, никак прямо не связан с проблемой субстанциональности. Существование определено деятельностью субъекта. Кант очень жестко развел понятия субъекта и субстанции. Первый описан им как действующее сознание, которое продуцирует предметы своего знания, обнаруживая в этих, созданных им предметах свое собственное единство. Это единство - единство деятельного 'Я' или "трансцендентальное единство апперцепции" никак не может быть названо субстанцией, хотя бы даже и мыслящей. Нельзя путать два вопроса: кто рассуждает и о чем ведется рассуждение. Субстанциальность может быть приписана только предмету, который конструируется в ходе рассуждения и при этом обнаруживается как существующий. Но тот, кто рассуждает не может конструировать сам себя.

Итак, онтологический статус предмета определяется не его отношением к субстанции, а его отношением к субъекту. Деятельность субъекта является критерием существования. Эта деятельность происходит в рамках, заданных ее трансцендентальными условиями, к которым, прежде всего, относятся пространство и время. Сама деятельность разворачивается во времени, как последовательность продуктивных синтетических актов. То, что появляется в результате этих актов, представляется как существующее в пространстве. Последнее верно для любого объекта, в том числе и для математического. Однако математика оказывается основой всякого, по крайней мере научного, мышления. Всякий объект существует, поскольку существует в пространстве. Но поскольку он существует в пространстве, он существует как протяженный предмет, и судить о нем нужно, прежде всего, как о предмете геометрии. "Все явления суть величины и притом экстенсивные величины" (B203; курсив Канта). Отчасти Кант повторяет здесь Декарта - во всяком случае и для него всякое естествознание должно быть прежде всего математическим естествознанием. Всякий предмет конструируется прежде всего как геометрическая фигура или тело. Коль скоро существовать значит быть сконструированным (причем сконструированным в пространстве), то любой предмет существует только в качестве математического. Вне математики невозможно никакое знание и никакое существование.

Онтологический статус предметов математики состоит, таким образом, в том, что они оказываются продуктами деятельности трансцендентального субъекта. Математическое творчество последнего несколько напоминает работу некого мыслительного автомата, производящего свои объекты без всякой определенной цели. Поэтому нам представляется недопустимым ограничивать рассмотрение математической онтологии Канта одной лишь первой "Критикой". Мы ограничимся здесь анализом лишь небольшого фрагмента из "Критики способности суждения", однако этот фрагмент, на наш взгляд, позволяет ввести в математический дискурс мотив целесообразности, а также увидеть нечто новое в кантовском понимании математической онтологии. Правда, в отличии от "Критики чистого разума", изобилующей математическими примерами, "Критика способности суждения" обращается, по преимуществу, к сферам, далеким от математики. Тем не менее установленные там принципы отнюдь не безразличны для интерпретации математической деятельности.

Понятие цели в деятельности субъекта вводится при анализе рефлектирующей способности суждения. Взаимодействие рассудка со способностью воображения сводится к тому, что воображение конструирует объект сообразно общему правилу, предписанному рассудком. При этом происходит подведение конструируемого единичного предмета под уже имеющееся правило. Однако далеко не всегда правило имеется как нечто окончательно сформулированное. "Существует такое многообразие форм природы, столько модификаций общих трансцендентальных понятий, остающихся не определенными теми законами, которые априорно дает чистый рассудок,...что для всего этого также должны быть законы" ([28], с. 50). Такой закон должна дать способности воображения рефлектирующая способность суждения, которая поднимается от имеющегося особенного к общему. Кант относит такую деятельность к эмпирической сфере, к описанию "законов природы". В [33] деятельность рефлектирующей способности суждения представлена как выдвижение объясняющих гипотез для ряда наблюдаемых эмпирических фактов. Так, утверждение, что планета движется по эллиптической орбите, есть обобщение рефлектирующей способности суждения, сделанное по отношению к ряду эмпирических наблюдений за движением планеты. Важно иметь в виду, что такое обобщение не имеет ничего общего с абстрагированием. Понятие эллипса не содержится в бессвязном наборе цифр, определяющих положение планеты в разные моменты времени. Очевидно, что речь здесь вновь должна идти о синтезе, основанном на априорных способностях субъекта. Этот синтез отличается от простого синтеза способности воображения тем, что содержит момент целесообразности. Он производится для того, чтобы объяснить ряд полученных фактов. Не следует упускать из виду, что полученный факт также есть результат некоторого конструирования, т.е. объект рассудка и способности воображения. В свою очередь гипотеза рефлектирующей способности суждения также может стать объектом дальнейшего обобщения. Эллиптические орбиты, рассмотренные как данные (ранее сконструированные) объекты, получают свое объяснение, благодаря более общей гипотезе - законам ньютоновской механики.

Можно рассмотреть два аспекта деятельности рефлектирующей способности суждения. С одной стороны - это создание теории. Гипотеза, обобщающая ряд фактов, представляет собой постулат, из которого эти факты получаются в виде его логических следствий. С другой стороны, такая гипотеза есть также результат конструирования. Последнее особенно ясно в примере с законом Кеплера: представление об эллиптической орбите очевидно требует работы способности воображения. Однако без воображения невозможно создать и эмпирические законы иного рода. В математическом естествознании эти законы всегда записываются в виде формул, т.е. в виде знаковых конструкций, создаваемым сообразно определенным правилам. Их построение представляет собой деятельность, которую Кант описал как символическое конструирование (B745). Но такого же рода конструирование представляет собой и вывод одних формул из других - а именно к этому сводится обоснование наблюдаемых фактов в рамках теории. Следовательно деятельность рефлектирующей способности суждения можно рассмотреть как построение определенной структуры, для которой ранее установленные факты (т.е. ранее сконструированные объекты) являются элементами. (См. примечание 7)

Если в "Критике чистого разума" Кант рассматривает лишь способ синтеза суждений, то в "Критике способности суждения" речь идет о решении естественнонаучной проблемы. Оно (решение) состоит в том, чтобы представленные в виде бессвязного агрегата объекты были объединены в рамках целостной структуры. Именно в этой структуре каждый объект должен получить свое место и свое назначение. Поэтому здесь и реализуется принцип целесообразности. Очень важно иметь в виду, что действие способности суждения не является простым формулированием общего правила для ряда единичных объектов (или частных фактов). Нужно не просто сформулировать гипотезу, но сформулировать ее так, чтобы все требуемые факты выводились из нее как частные случаи. Эта процедура вывода должна предугадываться способностью суждения наряду с самим общим правилом. Иными словами способность суждения есть способность предвидеть структуру рассуждения как целого.

Едва ли, кстати, можно утверждать, что столь сложная работа сводится только к действию способности суждения. Очевидно, что наряду с ней здесь действуют и другие способности, а именно рассудок и воображение. Решение естественнонаучных проблем явно подразумевает ту "свободную игру" познавательных способностей, которую Кант связывал с принципом удовольствия (см. [28], c. 85)

Все сказанное мы, вслед за Кантом, отнесли к сфере исследования природы. Однако в той же мере это верно и для математики. Любая математическая задача представляет собой изложение фактов, никак, на первый взгляд, между собой не связанных. Решение задачи состоит в том, чтобы обнаружить и построить некоторую единую конструкцию, в которой все наличные факты получают свое место. Это особенно очевидно при решении геометрических задач, в которых необходимо дополнительное построение, приводящее к созданию более сложной конфигурации, из которой однако легко усматривается ответ на вопрос задачи. Но то же самое происходит и при решении любых задач, где в роли такой конфигурации выступает алгебраический вывод или более сложный математический текст, включающий как знаковые, так и графические элементы.

Уместность описанной гипотетико-дедуктивной процедуры при решении математических задач была довольно подробно описана Д. Пойа в [44] и [45]. На множестве примеров (как учебных, так и исторических) в этих книгах показывается, что важным моментом решения задачи является индуктивная догадка, обобщающая и связывающая воедино множество установленных ранее фактов. Едва ли многие математические теоремы появляются в результате чистого дедуктивного вывода из аксиоматически заданных посылок. Чаще они рождаются в виде догадок, необходимых для решения задачи (или ряда задач). С другой стороны, сколь бы частной ни была задача ее решение является чем-то вроде мини-теории, где ответ оказывается следствием из установленного в виде гипотезы постулата. Немаловажное отличие от естественнонаучной теории состоит в том, что сам этот частный постулат нуждается в доказательстве.

Все сказанное позволяет дополнить приведенное ранее определение существования. Математический объект существует постольку, поскольку сконструирован. Однако математика не есть простое конструирование объектов. Она представляет собой решение задач, а потому каждый объект появляется в ней в рамках более общей структуры, продуцируемой познавательными способностями для того, чтобы получить такое решение. Значит объект существует, поскольку встроен в такую структуру в виде ее элемента. Сама структура предстает как конструкция способности воображения и о ней также может быть поставлен вопрос - в рамках какой еще более общей структуры она существует. Разум не может представить, как налично реализованную, совокупность структур, последовательно включенных друг в друга в виде бесконечной конструкции. Поэтому вопрос о существовании требует для своего полного разрешения введения регулятивных понятий. В математике поэтому неизбежны представления о бесконечных совокупностях, в рамках которых существуют частные математические объекты. Для естествознания таким регулятивом выступает понятие о мире, в котором может быть реализовано сколь угодно много теоретических структур.

Необходимо, впрочем, иметь в виду, что в "Критике способности суждения" нет речи о существовании, тем более о существовании математических объектов. Кантовское решение проблемы существования связано с рассмотрением категорий модальности, чем мы подробно займемся в Главе 3. Но сразу можно сказать, что это рассмотрение не будет полным без учета принципа целесообразности. С другой стороны, мы вплотную подошли к тому пониманию существования, которое связали в Введении с именем Кассирера. В рамках нашей интерпретации кантовского определения рефлектирующей способности суждения всякий объект считается существующим тогда, когда определено его место в некоторой структуре, разворачиваемой согласно установленному правилу (логической форме). Более того, теперь можно яснее сказать о какой структуре должна идти речь - это структура теории, создаваемой на основе индуктивной догадки и объясняющей ранее установленные факты. (См. примечание 8)Впрочем, предъявление структуры не является еще достаточным условием для утверждения о существовании элементов. Необходимо указать особые свойства такой структуры - ниже мы попытаемся разобрать, как решал эту проблему Гильберт.

Примечания

1. Интересный и весьма скрупулезный анализ роли математических образов в философском мышлении дан В.А.Шапошниковым в [60].

2. Латинский перевод аристотелевского термина ousia.

3. Подробное рассмотрение философии математики Беркли предпринято в книге Джессефа [73]. Там, в частности, разбирается теория "репрезентантов" (термин Джессефа), развиваемая Беркли как альтернатива теории абстракции. Речь идет о намерении Беркли доказать, что в математике нет никаких общих понятий, абстрагированных от единичных предметов, а есть лишь те же самые единичные предметы (т.е. идеи), которые выступают в рассуждении как представители целых классов подобных им идей.

4. Пустяковые трудности.

5. Следуя терминологии Беркли, лучше было бы сказать "интерсубстанциональной".

6. Объектом называется то, что представлено мышлению как нечто мыслимое, точнее представлено мыслящим субъектом самому себе. "Объект есть то, в понятии чего объединено многообразие данного наглядного представления" (B137; курсив Канта). Следовательно объект всегда представляет собой результат конструирования.Именно этого значения названного термина мы и будем придерживаться в дальнейшем. В "Критике чистого разума" наряду со словом "объект" (Objekt) используется и слово "предмет" (Gegenstand), для которого не дается более или менее ясного определения. По всей видимости "предметом" можно назвать и то, что не представляется как результат конструирования. Существует мнение ( [74], с. 268), что Кант не проводит никакого ясного различения между двумя названными терминами и пользуется ими как взаимозаменяемыми. Леппакоски замечает по этому поводу, что в английском переводе "Критики чистого разума" оба слова совершенно правомерно передаются одним и тем же термином "object". Тем не менее нам представляется, что если "объектом" можно назвать только нечто реально возможное, т.е. производимое продуктивной способность воображения, то термин предмет допускает более широкое использование. Например, "множество всех действительных чисел", которое невозможно сконструировать, допустимо называть предметом, но не объектом.

7. Связь категорий объект и факт нуждается в дополнительном рассмотрении. Мы проведем его в Главе 3 при сопоставлении категорий действительности и необходимости.

8. Причем факты могут служить для фальсификации теории. Последнее означает, что построенный при заданных посылках объект не может быть "вписан" в теоретическую структуру. На связь попперовской идеи фальсификации с "Критикой способности суждения" указано также в [33]. Впрочем, эта связь должна быть предметом особого исследования. Равно как и связь представлений Поппера о строении научной теории с развертыванием категории "действительности" у Кассирера ([32],c. 349-400). Оба эти мыслителя строят очень похожие конструкции, связывающие частные факты с общей гипотезой.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://rusjaz.da.ru/


Информация о работе «Рассмотрение онтологического статуса предметов математики в некоторых философских системах»
Раздел: Философия
Количество знаков с пробелами: 54330
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
27495
0
0

... дедуцируется. Собственно категории "объект" и "природа" также оказываются особыми структурами дискурса, а понятия "внутреннего" и "внешнего" вовсе теряют смысл. (См. примечание 4) Противопоставление категорий сущности и структуры при исследовании природы и онтологического статуса математических объектов является главной методологической посылкой нашего исследования. Его целью является попытка ...

Скачать
43913
0
0

... как материю порядкового числа, а порядок, существующий между этими элементами, как форму (c. 270-271). (См. примечание 1) 3 Брауэровская интерпретация существования Выше мы выделили такое понимание существования предмета в математике, которое основано на возможности непосредственно указать на этот предмет с помощью определенной завершенной процедуры. Иными словами, предмет существует тогда, ...

Скачать
399962
0
0

... ТГПИ им. Д.И. Менделеева (6-7 апреля 2007 г. г. Тобольск) / Отв. ред. Т.А. Яркова. – Тобольск: ТГПИ им. Д.И. Менделеева, 2007. – С.31-32. 102. Канапацкий Н.А. К вопросу об онтологической истинности феномена человеческой духовности [Текст] / Н.А. Канапацкий // Наука и молодежь: материалы IX Всероссийской научно-практической конференции студентов и аспирантов (23 мая 2008г.). – Н. Новгород: ВГИПУ, ...

Скачать
876227
1
2

... Замечат. С.: Полемон, Герод Аттик, Аристид, Либаний. Ср. Schmid, "Der Atticismus in seinen Hauptvertretern" (1887-97). 17. Принцип детерминизма в философии. Индетерминизм. Детерминизм (от лат. determino - определяю), философское учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и ...

0 комментариев


Наверх