7 Исследование системы массового обслуживания

  7.1 Проверка гипотезы о показательном распределении

 

Исследуемое мной предприятие представляет собой двухканальную систему массового обслуживания с ограниченной очередью. На вход поступает пуассоновский поток заявок с интенсивностью λ. Интенсивности обслуживания заявок каждым из каналов μ, а максимальное число мест в очереди m.

Начальные параметры:

Время обслуживания заявок имеет эмпирическое распределение, указанное ниже и имеет среднее значение .

Мной были проведены контрольные замеры времени обработки заявок, поступающих в данную СМО. Чтобы приступить к исследованию, необходимо установить по этим замерам закон распределения времени обработки заявок.

Таблица 6.1 – Группировка заявок по времени обработки

Количество заявок 22 25 23 16 14 10 8 4
Время обработки, мин 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40

Выдвигается гипотеза о показательном распределении генеральной совокупности.

Для того чтобы, при уровне значимости  проверить гипотезу о том, что непрерывная случайная величина распределена по показательному закону, надо:

1) Найти по заданному эмпирическому распределению выборочную среднюю . Для этого, каждый i – й интервал заменяем его серединой  и составляем последовательность равноотстоящих вариант и соответствующих им частот.

2) Принять в качестве оценки параметра λ показательного распределения величину, обратную выборочной средней:

3) Найти вероятности попадания X в частичные интервалы по формуле:

4) Вычислить теоретические частоты:

,

где - объем выборки

5) Сравнить эмпирические и теоретические частоты с помощью критерия Пирсона, приняв число степеней свободы , где S – число интервалов первоначальной выборки.


Таблица 6.2 – Группировка заявок по времени обработки с усредненным временным интервалом

Количество заявок 22 25 23 16 14 10 8 4
Время обработки, мин 2,5 7,5 12,5 17,5 22,5 27,5 32,5 37,5

Найдем выборочную среднюю:

2) Примем в качестве оценки параметра λ экспоненциального распределения величину, равную . Тогда:

 ()

3) Найдем вероятности попадания X в каждый из интервалов по формуле:

Для первого интервала:


Для второго интервала:

Для третьего интервала:

Для четвертого интервала:

Для пятого интервала:

Для шестого интервала:

Для седьмого интервала:

Для восьмого интервала:

4) Вычислим теоретические частоты:


Результаты вычислений заносим в таблицу. Сравниваем эмпирические  и теоретические  частоты с помощью критерия Пирсона.

Для этого вычислим разности , их квадраты, затем отношения . Суммируя значения последнего столбца, находим наблюдаемое значение критерия Пирсона. По таблице критических точек распределения  при уровне значимости  и числу степеней свободы  находим критическую точку

Таблица 6.3 – Результаты вычислений

i

1 22 0,285 34,77 -12,77 163,073 4,690
2 25 0,204 24,888 0,112 0,013 0,001
3 23 0,146 17,812 5,188 26,915 1,511
4 16 0,104 12,688 3,312 10,969 0,865
5 14 0,075 9,15 4,85 23,523 2,571
6 10 0,053 6,466 3,534 12,489 1,932
7 8 0,038 4,636 3,364 11,316 2,441
8 4 0,027 3,294 0,706 0,498 0,151
122

Т.к. , то нет оснований отвергнуть гипотезу о распределении X по показательному закону. Другими словами, данные наблюдений согласуются с этой гипотезой.


7.2 Расчет основных показателей системы массового обслуживания

Данная система представляет собой частный случай системы гибели и размножения.

Граф данной системы:

Рисунок 10 – Граф состояний исследуемой СМО

Поскольку все состояния являются сообщающимися и существенными, то существует предельное распределение вероятностей состояний. В стационарных условиях поток, входящий в данное состояние должен быть равен потоку, выходящему из данного состояния.

(1)

Для состояния S0:

Следовательно:

Для состояния S1:


Следовательно:

С учетом того, что :

Аналогично получаем уравнения для остальных состояний системы. В результате получим систему уравнений:

Решение этой системы будет иметь вид:

; ; ; ; ;

; .


Или, с учетом (1):

; ; ; ; ; ;

.

Коэффициент загруженности СМО:

С учетом этого предельные вероятности перепишем в виде:

Наивероятнейшее состояние – оба канала СМО заняты и заняты все места в очереди.

Вероятность образования очереди:

Отказ в обслуживании заявки происходит, когда все m мест в очереди заняты, т.е.:

Относительная пропускная способность равна:

Вероятность того, что вновь поступившая заявка будет обслужена, равна 0,529

Абсолютная пропускная способность:

СМО обслуживает в среднем 0,13225 заявок в минуту.

Среднее число заявок, находящихся в очереди:

Среднее число заявок в очереди близко к максимальной длине очереди.

Среднее число заявок, обслуживаемых в СМО, может быть записано в виде:

В среднем все каналы СМО постоянно заняты.

Среднее число заявок, находящихся в СМО:

Для открытых СМО справедливы формулы Литтла:

Среднее время пребывания заявки с СМО:

Среднее время пребывания заявки в очереди:

 
7.3 Выводы о работе исследуемой СМО

Наиболее вероятное состояние данной СМО – занятость всех каналов и мест в очереди. Приблизительно половина всех поступающих заявок покидают СМО необслуженными. Приблизительно 66,5% времени ожидания приходиться на ожидание в очереди. Оба канала постоянно заняты. Все это говорит о том, что в целом данная схема СМО неудовлетворительна.

Чтобы снизить загрузку каналов, сократить время ожидания в очереди и снизить вероятность отказа необходимо увеличить число каналов и ввести систему приоритетов для заявок. Число каналов целесообразно увеличить до 4. Также необходимо сменить дисциплину обслуживания с FIFO на систему с приоритетами. Все заявки теперь будут иметь принадлежность к одному из двух приоритетных классов. Заявки I класса имеют относительный приоритет по отношению к заявкам II класса. Для расчета основных показателей этой видоизмененной СМО целесообразно применить какой-либо из методов имитационного моделирования. Была написана программа на языке Visual Basic, реализующая метод Монте-Карло.

 
8 Исследование видоизмененной СМО

Пользователю при работе с программой необходимо задать основные параметры СМО, такие как интенсивности потоков, количество каналов, приоритетных классов, мест в очереди (если количество мест в очереди равно нулю, то СМО с отказами), а также временной интервал модуляции и количество испытаний. Программа преобразовывает сгенерированные случайные числа по формуле (34), таким образом, пользователь получает последовательность временных интервалов , распределенных показательно. Затем отбирается заявка с минимальным , и ставится в очередь, согласно ее приоритету. За это же время  происходит перерасчет очереди и каналов. Затем эта операция повторяется до окончания времени модуляции, задаваемого изначально. В теле программы присутствуют счетчики, на основании показаний которых и формируются основные показатели СМО. Если для увеличения точности было задано несколько испытаний, то в качестве конечных результатов принимается оценка за серию опытов. Программа получилась достаточно универсальной, с ее помощью могут быть исследованы СМО с любым количеством приоритетных классов, либо вообще без приоритетов. Для проверки корректности работы алгоритма, в него были введены исходные данные классической СМО, исследуемой в разделе 7. Программа смоделировала результат близкий к тому, который был получен с помощью методов теории массового обслуживания (см. приложение Б). Погрешность, возникшая в ходе имитационного моделирования, может быть объяснена тем, что проведено недостаточное количество испытаний. Результаты, полученные с помощью программы для СМО с двумя приоритетными классами и увеличенным числом каналов, показывают целесообразность этих изменений (см. приложение В). Высший приоритет был присвоен более «быстрым» заявкам, что позволяет быстро обследовать короткие задания. Сокращается средняя длина очереди в системе, а соответственно минимизируется средство для организации очереди. В качестве основного недостатка данной организации можно выделить то, что «долгие» заявки находятся в очереди длительно время или вообще получают отказ. Введенные приоритеты могут быть переназначены после оценки полезности того или иного типа заявок для СМО.


Заключение

В данной работе была исследована двухканальная СМО методами теории массового обслуживания, рассчитаны основные показатели, характеризующие ее работу. Был сделан вывод о том, что данный режим работы СМО не является оптимальным и были предложены методы, снижающие загруженность и повышающие пропускную способность системы. Для проверки этих методов была создана программа, моделирующая метод Монте-Карло, с помощью которой были подтверждены результаты вычислений для исходной модели СМО, а также рассчитаны основные показатели для видоизмененной. Погрешность алгоритма может быть оценена и снижена путем увеличения количества испытаний. Универсальность программы позволяет использовать ее при исследовании различных СМО, в том числе и классических.


Список использованных источников

1 Вентцель, Е.С. Исследование операций / Е.С. Вентцель. - М.: «Советское радио», 1972. - 552 с.

2 Гмурман, В.Е. Теория вероятностей и математическая статистика / В.Е. Гмурман. - М.: «Высшая школа», 2003. - 479 с.

3 Лаврусь, О.Е. Теория массового обслуживания. Методические указания/ О.Е. Лаврусь, Ф.С. Миронов. - Самара: СамГАПС, 2002.- 38 с.

4 Саакян, Г.Р. Теория массового обслуживания: лекции / Г.Р. Саакян. - Шахты: ЮРГУЭС, 2006. - 27 с.

5 Авсиевич, А.В. Теория массового обслуживания. Потоки требований, системы массового обслуживания / А.В. Авсиевич, Е.Н. Авсиевич. - Самара: СамГАПС, 2004. - 24 с.

6 Черненко, В.Д. Высшая математика в примерах и задачах. В 3. т. Т. 3/ В.Д. Черненко. - Санкт – Петербург: Политехника, 2003. - 476 с.

7 Клейнрок, Л. Теория массового обслуживания / Л. Клейнрок. Пер.с англ./ Пер. И.И. Грушко; под ред. В.И. Нейман. - М.: Машиностроение, 1979. - 432 с.

8 Олзоева, С.И. Моделирование и расчет распределенных информационных систем. Учебное пособие / С.И. Олзоева. - Улан-Удэ: ВСГТУ, 2004. - 66 с.

9 Соболь, И.М. Метод Монте-Карло / И.М. Соболь. - М.: «Наука», 1968. - 64 с.


Информация о работе «Понятие и классификация систем массового обслуживания»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 39255
Количество таблиц: 3
Количество изображений: 8

Похожие работы

Скачать
52202
13
13

... из одного состояния в другое и распределение времени пребывания процесса в каждом состоянии (в виде функции распределения F(t) или в виде плотности распределения f(t)) Классификация систем массового обслуживания   В общем случае СМО классифицируется по следующим признакам: ·  закону распределения входного потока ·  числу обслуживающих приборов ·  закону распределения времени обслуживания в ...

Скачать
48576
0
16

... сколько их уже исправно и ждет наладки. Классификация СМО далеко не ограничивается приведенными разновидностями, но этого достаточно.2. Системы массового обслуживания с ожиданием   2.1 Одноканальная СМО с ожиданием   Рассмотрим простейшую СМО с ожиданием — одноканальную систему (n - 1), в которую поступает поток заявок с интенсивностью ; интенсивность обслуживания  (т.е. в среднем непрерывно ...

Скачать
46164
1
11

... очередь длины k, остается в ней с вероятностью Pk и не присоединяется к очереди с вероятностью gk=1 - Pk,'. именно так обычно ведут себя люди в очередях. В системах массового обслуживания, являющихся математическими моделями производственных процессов, возможная длина очереди ограничена постоянной величиной (емкость бункера, например). Очевидно, это частный случай общей постановки. Некоторые ...

Скачать
113546
0
0

... или одного типа, выявлять закономерности их развития, способствовать большей эффективности музейной деятельности в целом. Существуют и другие принципы классификации, не совпадающие ни с профильным делением, ни с типологией. В основе классификации музеев может лежать административно-территориальный признак, в соответствии с которым различаются республиканские, краевые, областные, районные музеи. ...

0 комментариев


Наверх