Министерство сельского хозяйства Р. Ф.
Уральская Государственная сельскохозяйственная академия.
Контрольная работа
По дисциплине: Радиобиология.
Исполнитель: студентка 3курса
заочного Ф. Т. Ж.
Руководитель:
Екатеринбург 2006
Задача 4.
активность бария-131 на 1 декабря была равна 4 мКu. Какова будет активность его 5 января следующего года? Период полураспада бария-131 равен 12 суткам.
t/T
Формула: At=Ao*2ˉ где, At-активность вещества через время (?)
Ao- исходная активность вещества (4мКu)
T- период полураспада(12суток)
t-время (36суток)
_36/12
Решение:
At=4мКu*2 = 0.5мКu.
Ответ: активность бария-131 5 января будет 0,5мКu.
Задача 14.
За 30 минут пребывания в зоне радиоактивного излучения человек получил дозу облучения 160мкР. Какова мощность дозы излучения в этой зоне?.
Формула: P=D/t где, P-мощность дозы (?)
D- доза радиоактивного излучения (160мкР)
t- время (30минут)
Решение:
P=160мкР/30мин.=5,3мкР/мин.
Ответ: мощность дозы равна 5,3мкР/минуту.
Задача 24.
При измерении радиоактивности пробы шерсти измерение прибора было равно 286имп/мин. Скорость счета по эталону равна 691имп/мин. Рассчитайте радиоактивность пробы шерсти, если радиактивность эталона содержащего серу-35-3мКu.
Формула: Апр=Аэт*Nпр./Nэт. где , Апр-радиактивность пробы шерсти(?)
Аэт-скорость счета по эталону (691имп/мин)
Nпр-радиоактивность пробы шерсти (286имп/мин)
Nэт- радиактивность эталона (3мКu).
Решение:
Апр=3мКu*286имп/мин/691имп/мин=1,24мКu.
Ответ: радиоактивность пробы шерсти равна 1,24мКu.
4. Явление радиоактивности. Радиоактивность естественная и искусственная.
Явление радиоактивности было открыто в 1896 г. французским физиком Анри Беккерелем. Он обнаружил, что содержащие уран вещества испускают невидимые лучи, вызывающие потемнение фотопластинки и способные проникать через бумагу, дерево и другие плотные среды. Некоторое время спустя знаменитые французские физики Мария Склодовская-Кюри и Пьер Кюри установили, что способностью испускать такие лучи обладают, кроме урана, еще торий и полоний. Немного позднее (1898) ими был открыт радий. Супруги Кюри выделили радий в чистом виде, который представлял собой мягкий серебристо-белый металл, похожий по своим свойствам на барий. Исследования показали, что интенсивность излучения, испускаемого радием, в миллионы раз больше, чем у урана. Беккерель и супруги Кюри показали сильное действие излучения радия на человеческий организм.
Способность некоторых элементов испускать открытые Беккерелем лучи супруги Кюри назвали радиоактивностью, а вещества, обладающие этой способностью, — радиоактивными веществами.
В настоящее время излучения, возникающие при радиоактивном распаде, называют ионизирующими или ядерными, излучениями. Первое из этих названий связано с одним из главных свойств данных излучений — способностью производить ионизацию в окружающей среде. Однако этой способностью обладают также и рентгеновские лучи и отчасти ультрафиолетовые. Поэтому более точным является название «ядерные излучения».
Естественные радиоактивные элементы
Природными, или естественными, излучателями называются все радиоактивные изотопы, встречающиеся в природе и не созданные человеком. Явление естественной радиоактивности, как было сказано ранее, открыто в самом конце XIX века. Следы естественной радиоактивности можно обнаружить во всех веществах живой и неживой природы.
Открытие естественной радиоактивности оказало глубокое влияние на многие фундаментальные понятия науки. Явление естественной радиоактивности было использовано для создания эффективных методов изучения микроскопической структуры веществ и их свойств. Радиоактивность естественных излучателей начали использовать при изучении строения атомных ядер для оценки возраста земли и измерения скорости образования осадков на дне океанов.
В настоящее время в природе обнаружено около 340 изотопов, причем 70 из них являются радиоактивными, это в основном изотопы тяжелых металлов.
Основное количество естественных радиоактивных изотопов относится к тяжелым элементам. Все элементы, имеющие атомный номер больше 80, имеют радиоактивные изотопы. Изотопы элементов с атомным номером больше 82 в стабильном состоянии вообще неизвестны, все они являются радиоактивными. Кроме естественно возникших радиоактивных излучателей земного происхождения, имеются некоторые изотопы, образованные в процессе взаимодействия космических лучей с газами земной атмосферы и отдельными элементами земной коры. Наиболее важными из них являются углерод (С14) и тритий (Н3).
Естественные радиоактивные изотопы, встречающиеся в природе, можно разбить на три группы. В первую группу входят естественные радиоактивные элементы, известные изотопы которых радиоактивны. К этой группе относятся три семейства последовательно превращающихся изотопов: ряды урана — радия, тория и актиния. Промежуточными продуктами распада этих радиоактивных семейств являются как твердые, так и газообразные изотопы (эманации). Наибольшее значение из этой группы имеют уран (U235), торий (Тh232), радий (Rа226) и радон (Rn222, Rn220). Во вторую группу входят изотопы химических элементов, связанных генетически, т. е. не образующие семейства. К этой группе относятся калий (К40), кальций (Са48), рубидий (RЬ87), цирконий (Zг96), лантан (Lа138), самарий (Sm147), лютеций (Lu176). Основное значение из этой группы имеет калий: он обусловливает наибольшую величину естественной радиоактивности.
В третью группу входят так называемые космогенные изотопы, которые образуются в стратосфере под действием космических лучей, захватываются атмосферными осадками и в их составе выпадают на земную поверхность. К этой группе относятся тритий (Н3), бериллий (Ве7, Ве10) и углерод (С14).
Естественные излучатели в основном являются долгоживущимиизотопами, с периодом полураспада 108—1016 лет. В процессе распада они испускают α- и β-частицы, а также γ-лучи. Обычно эти естественные радиоактивные изотопы находятся в очень рассеянном состоянии.
Искусственные радиоактивные изотопы
Кроме естественных радиоактивных изотопов, существующих в природной смеси элементов, известно много искусственных радиоактивных изотопов. Искусственные радиоактивные изотопы получаются в результате различных ядерных реакций. Изучение естественной радиоактивности показало, что превращение одного химического элемента в другой обусловлено изменениями, происходящими внутри атомных ядер, т.е. внутриядерными процессами. В связи с этим были предприняты попытки искусственного превращения одних химических элементов в другие путем воздействия на атомные ядра.
Для превращения одних химических элементов в другие необходимо было атомные ядра подвергать таким воздействиям, которые бы приводили к изменению ядер и связанному с этим превращению одних элементов в другие. Следовательно, нужны были источники энергии того же порядка, как энергия внутриядерных связей. Эффективным средством воздействия на атомные ядра оказалась бомбардировка их частицами высокой энергии (от нескольких миллионов до десятков миллиардов электрон-вольт).
В первое время в качестве бомбардирующих частиц применяли α-частицы радиоактивного излучения.
В 1919 г. Резерфорд впервые осуществил искусственное расщепление ядер азота, бомбардируя их α-частицами полония. Затем стали применять и другие заряженные частицы, предварительно сообщая им очень большую скорость (кинетическую энергию) в специальных ускорителях. Кроме того, в настоящее время применяются потоки заряженных и нейтральных частиц, создаваемые ядерными реакторами. Процесс превращения атомных ядер, обусловленный воздействием на них быстрых элементарных частиц (или ядер других атомов), называется ядерной реакцией. Например, после пропускания α-лучей через слой азота образуются атомы изотопа кислорода и атомные ядра водорода, т.е. протоны. Эта ядерная реакция протекает следующим образом: α-частица попадает в ядро азота и поглощается им. Образуется промежуточное ядро изотопа фтора 9F18, которое оказывается неустойчивым, оно мгновенно выбрасывает из себя один протон и превращается в изотоп кислорода.
В настоящее время запись ядерных реакции производят более сокращенно. После символа атомного ядра, подвергающегося, бомбардировке указывают в скобках бомбардирующую частицу и другие частицы, появляющиеся в результате реакции; за скобкой ставят символ атомного ядра — продукта. Этот способ записи к рассматриваемой реакции может выглядеть следующим образом. Первая искусственная ядерная реакция, проведенная Резерфордом, подтвердила возможность осуществления искусственных ядерных реакций и непосредственно показала, что протоны входят в состав атомных ядер и могут быть выбиты из этих ядер.
Все ядерные реакции сопровождаются испусканием тех или иных элементарных частиц (в том числе и γ-квантов) . Продукты многих ядерных реакций оказываются радиоактивными. Явление искусственной радиоактивности было открыто известными французскими физиками Ирэн и Фредериком Жолио-Кюри в 1934 г. Они впервые искусственным путем получили радиоактивные изотопы элементов, встречающихся в природе в виде устойчивых изотопов. Такие изотопы были названы искусственно радиоактивными изотопами.
Первые искусственно радиоактивные изотопы были получены при бомбардировке α-частицами элементов бора, магния, алюминия. При бомбардировке алюминия вылетают нейтроны и получался изотоп фосфора, испускающий позитроны. Изотоп фосфора оказался радиоактивным, его атомные ядра испускали позитроны и превращались в ядра кремния. реакция бомбардировки алюминия α-частицами, открытая супругами Жолио-Кюри, показала новый вид радиоактивного распада-позитронный распад, который не наблюдается у естественно биоактивных изотопов.
В дальнейшем было показано, что искусственные радиоактивные изотопы можно получить, бомбардируя стабильные изотопы не только α-частицами, но нейтронами и другими ядерными частицами.
В настоящее время радиоактивные изотопы известны почти для всех элементов и их можно получить, при самых разнообразных ядерных реакциях. Так, даже один и тот же изотоп может быть получен в результате совсем различных ядерных реакций. После открытия искусственной радиоактивности стало возможным нанесение «метки» на атомы почти каждого химического элемента. Искусственные радиоактивные изотопы стали применяться в качестве меченых атомов. Метод меченых атомов в настоящее время имеет большое значение в самых разнообразных науки областях и практики.
Следует отметить, что методом меченых атомов называют работу как со стабильными, так и с радиоактивными изотопами, если эти изотопы используются как индикаторы. Радиоактивные изотопы применяются в качестве меченых атомов чаще, чем стабильные потопы.
В настоящее время для получения искусственных радиоактивных изотопов в промышленности применяют три основных метода: 1) бомбардировка химических соединений и элементов ядерными частицами; 2) химическое разделение смеси изотопов; 3) выделение продуктов распада естественных радиоактивных изотопов.
Для биологических и сельскохозяйственных работ имеют значение в основном изотопы, полученные двумя первыми методами. В промышленном масштабе искусственные радиоактивные изотопы получают путем облучения (преимущественно нейтронного) соответствующих химических элементов в ядерном реакторе. В результате ядерной реакции типа (n, γ) получается изотоп того элемента, который облучается. При реакциях типа (n, α) и (n, p) образуются изотопы других элементов.
... . Измеряя выход химических реакций, т.е. количество вновь образованных конечных продуктов реакций, можно определить поглощенную энергию. На этом принципе основаны химические методы обнаружения и измерения радиоактивного излучения. Достоинство химических детекторов заключается в возможности выбора таких веществ, которые по воздействию на них ионизирующих излучений мало отличаются от тканей. ...
... во время образования ядра из протонов и нейтронов, называется энергией связи ядра и характеризует ее стабильность. 14. Стицилляционный, химический и фотохимический методы обнаружения и регистрации ионизирующих излучений Современные сцинтилляционные счетчики подразделяют на счетчики с твердым и жидким сцинтилляторами. Жидкостно-сцинтилляционные счетчики предназначены для регистрации бета- ...
... , так как при случайном загрязнении этими веществами окружающих предметов потребуется специальная работа по дезактивации помещения и приборов. 2. Методики анализа, основанные на измерении радиоактивности 2.1. Использование естественной радиоактивности в анализе Элементы, имеющие естественную радиоактивность, могут быть определены по этому свойству количественно. Это U, Th, Ra, Ac и др., ...
... на территории одного государства, могут оказывать воздействие на природу и граждан другого государства. Так правительства Норвегии и Швеции заявляют, что выпадение кислотных осадков на их территории частично обусловлено выбросами загрязнителей в Великобритании и Северной Европе. Промышленные и автомобильные выбросы в США неизменно вносят вклад в кислотные дожди над Канадой, а Канада в свою ...
0 комментариев