3.2 Определение конструктивной и расчетной длин ригеля
Конструктивная длина ригеля определяется из условия ее опирания на колонны (рис.3.2). Для удобства монтажа между колонной и ригелем с обеих сторон оставляется зазор по 20мм.
Рис. 3.2. Схема опирания ригеля на колонны.
Учитывая размеры колонны и величину номинальной длины ригеля, определим конструктивную длину плиты по формуле:
,
где – номинальная длина ригеля, принятая в разделе 2; = 5760мм;
мм.
По центру площадок опирания ригеля на колонны действуют опорные реакции. Расстояние между этими реакциями – это расчетная длина ригеля. Длина площадки опирания плиты на ригель равна 130мм. Следовательно, опорные реакции будут находиться в 65мм (130мм/2) от краев ригеля с обеих сторон. Расчетная длина ригеля будет определяться по формуле:
мм = 5,19м.
3.3 Определение расчетных усилий
Расчетные усилия в ригеле определяются как для однопролетной шарнирно опертой балки по формулам:
; ,
где q – полная распределенная нагрузка на ригель; q = 79,77кН/м;
lо – расчетная длина ригеля; lо = 5,19м;
кН∙м;
кН.
3.4 Выбор материалов для плиты перекрытия
Для плиты перекрытия принимаем следующие материалы:
- бетон: класс В-25; Rb = 14,5МПа.
- арматура: А-400; Rs = 355МПа.
3.5 Расчет ригеля по нормальному сечению (подбор продольной рабочей арматуры)
Схема армирования ригеля указана на рис 3.3.
Рис. 3.3. Схема армирования продольного ребра.
Коэффициент αm определяется по формуле:
,
где M – расчетный момент; M = 268,59кН∙м;
Rb – расчетное сопротивление бетона; Rb = 14,5МПа;
b – ширина ригеля поверху; b = 20см;
ho – расстояние от оси арматуры до верха ригеля (рабочая высота); ho = 55см;
γb1 – коэффициент условий работы бетона; γb1 = 0,9;
.
По приложению 10 находим значения ζ и ξ, соответствующие найденному значению αm = 0,34 (или ближайшему по величине к найденному). Для αm = 0,34 значения этих величин будут равны: ζ = 0,785; ξ = 0,43. Для арматуры A-400 ξR = 0,531. Проверяем выполнение условия ξ < ξR. Данное условие выполняется (0,43 < 0,531).
Находим требуемое сечение арматуры по формуле:
,
где Rs – расчетное сопротивление стали; Rs = 355МПа;
см2.
По приложению 12 подбираем ближайшее большее значение к требуемой площади для четырех стержней. Принимаем арматуру 4ø25 A-400 с фактической площадью сечения As = 19,64см2.
>
3.6 Расчет ригеля по наклонному сечению (подбор поперечной арматуры)
В курсовом проекте расчет ригеля по наклонному сечению не производим. Поперечную арматуру принимаем только по конструктивным требованиям.
Диаметр поперечной арматуры принимаем из условия сварки с продольной рабочей арматурой.
Для продольной рабочей арматуры ø25 A-400 (<ø22) принимаем поперечную арматуру ø8 A-400.
Шаг поперечной арматуры:
- в близи опор (1/4 lo) шаг будет равен:
см; принимаем шаг 20см;
- в средней части плиты шаг будет равен:
см; принимаем шаг 40см.
... ; 19 – деревянный каркас панели; 20 – гернит; 21 – рейка, фиксирующая положение утеплителя. 2. Конструктивные системы остова многоэтажных зданий Конструктивной системой здания называется совокупность взаимосвязанных конструкций здания, обеспечивающих его прочность, жесткость и устойчивость. Несущая конструкция здания обеспечивает его пространственную устойчивость и передает нагрузки, ...
... свариваемости назначается диаметр поперечной арматуры dsw. 2. По диаметру и количеству поперечных стержней в сечении определяется площадь поперечной арматуры. мм, Asw = n∙fsw, где n – количество каркасов в плите; fsw – площадь одного поперечного стержня. Asw = 1,01 см2, 3. По конструктивным условиям назначается шаг поперечных стержней S: - если высота плиты h ≤ 450 мм., ...
... занимают пропорции. Золотого сечения. На их основе образуется ряд, обладающим замечательным свойством, взаимопроникающей соразмерностью, -каждый последующий член равен сумме двух предыдущих. Реконструкция здания в данном проекте включила в себя несколько категорий работ: · облицовка сооружения природным камнем · облицовка искусственными плитками · облицовка искусственным и природным ...
Наличие этих характеристик обеспечивает комфорт проживания, а следовательно, и социальную эффективность жилой среды. Достижение комфорта составляет главную цель проектирования. Для ее реализации приходится решать целый ряд специфических задач. В городе и в селе организация жилой среды начинается с размещения селитебных зон относительно мест трудовой деятельности населения, элементов природного ...
0 комментариев