3. Синхронное орбитальное излучение
При искривлении траектории в магнитном поле ускорителей кольцевого типа, например синхротрона, электроны излучают электромагнитные волны, называемые синхротронным орбитальным излучением В настоящее время часто используют термины синхротронное излучение и синхротронное свечение.
На рис. 7 приведена схема возникновения синхронного излучения в устройстве кольцевого типа. Электроны, уже набравшие необходимую скорость в линейном ускорителе, влетают в кольцо с поворотными электромагнитами и движутся в нем. В тех местах, где магнитное поле искривляет траекторию электронов, ставятся выходные окна для излучения. Полученное излучение используют для различных целей. Такие сооружения есть в Японии: в Институте деления атомного ядра Токийского университета (0,4 ГэВ), в Институте деления и синтеза атомных ядер (0,6 ГэВ) и в институте физики высоких энергий (2,5 ГэВ).
Синхротронное излучение может занимать любую область в широком спектре длин волн - от инфракрасного, видимого и ультрафиолетового до рентгенов.
4. Хромизм
Хромизмом называют обратимые изменения цвета вещества под действием электрического поля, при облучении светом или пучком электронов. Если цвет изменяется под действием ультрафиолетовых лучей и становится прежним под действием видимого света – это фотохромизм. Если цвет изменяется при облучении пучком электронов – это катодный хромизм, а под действием электрического поля – электрохромизм.
Фотохромные материалы - это, например, хлориды щелочей (КС1 и др.), фториды типа СаF2 с присадками редкоземельных элементов или такие вещества, как SrTiO3, CaTiO3, TiO2, с присадками металлов переходных групп, а также некоторые органические вещества. Электрохромные материалы среди неорганики – хлориды щелочей, оксиды переходных металлов типа WO3 и MoO3, а среди органики – биологические материалы и их производные, а также имидазол, дифталоцианины редкоземельных элементов.
Рассмотрим для примера механизм фотохромного изменения окраски в кристалле СаF2:Sm, Eu. Как показано на рис. 5, атомы Sm и Eu имеют уровни возбуждения, различные по энергии ионизации. Когда кристалл находится в состоянии теплового равновесия, уровни Sm2+ и Eu3++ поглощают свет и в белом свете образец приобретает зеленую окраску. Если кристалл подвергнуть ультрафиолетовому облучению, имеющему энергию hw1 электроны с уровней Sm2+ переходят в зону проводимости и ион Sm2+ превращается в Sm3+. Перешедший в зону проводимости электрон посредством тепловой релаксации опускается до уровня Eu3+, и получается ион Eu2+. В результате пропадает окраска кристалла - он становится бесцветным. Но если теперь осветить этот же кристалл видимым светом с энергией hw2, соответствующей разности между энергиями уровня Eu2+ и зоны проводимости, переход электронов произойдет в обратном направлении и кристалл снова приобретет зеленую окраску.
Применение электрохромизма на примере ячейки с рабочим веществом WO3. Если приложить минус поля к электроду подложки, ячейка приобретет внутреннюю окраску с интенсивностью, пропорциональной прошедшему заряду. При пропускании тока в обратном направлении окраска пропадает. Механизм изменения окраски следующий. Под действием электрического поля разлагается материал катода.
Электроны инжектируются полем в слой WO3, примыкающий к электролиту, и восстанавливают ионы Н+, образующие на этом слое соединение HxWO3. На рис. 7 показана электрохромная ячейка на основе биологического вещества. Изменение цвета происходит из-за резонанса радикалов органических соединений (неспаренных электронов), возникающих в результате обратимых электрохимических реакций.
Явление фотохромизма используют для изготовления солнечных очков, меняющих густоту окраски в зависимости от силы солнечного света, при лазерной записи в оптическую память, в указателях на фотохромных пленках и в цветных дисплеях.
5. Фотопроводимость
Увеличение электропроводности полупроводника или изолятора под действием света называют фотопроводимостью или внутренним фотоэффектом. Причина увеличения электропроводности - возбуждение светом носителей в валентной зоне и зоне проводимости. По механизму возбуждения носителей различают собственную фотопроводимость и несобственную фотопроводимость.
6. Классификация процессов люминесценции и их протекание
1 Люминесценцией называется излучение света телами, избыточное над тепловым при той же температуре и имеющее длительность, значительно превышающую периоды излучений в оптическом диапазоне спектра. Это излучение может быть вызвано бомбардировкой вещества электронами и другими заряженными частицами, пропусканием через вещество электрического тока (не-тепловое действие), освещением вещества видимым светом, рентгеновскими и гамма лучами, а также некоторыми химическими реакциями в веществе.
2 В отличие от равновесного теплового излучения, люминесцентное излучение не имеет равновесного характера. Оно вызывается сравнительно небольшим числом атомов, молекул или ионов. Под действием источника люминесценции они переходят в возбужденное состояние, и их последующее возвращение в нормальное или менее возбужденное состояние сопровождается испусканием люминесцентного излучения. Длительность свечения обусловлена длительностью возбужденного состояния, которое, помимо свойств люминесцирующего вещества, зависит от окружающей среды. Если возбужденное состояние метастабильно, то время пребывания в нем частицы может достигать 10"4 сек, что соответственно увеличивает и длительность люминесценции.
3 Люминесценция, сразу прекращающаяся после окончания действия возбудителя свечения, называется флуоресценцией. Люминесценция, сохраняющаяся длительное время после прекращения действия возбудителя свечения, называется фосфоресценцией.
Флуоресценция обусловлена переходами атомов, молекул или ионов из возбужденного состояния в нормальное. Фосфоресценция обусловлена наличием метастабильных возбужденных состояний атомов и молекул, переход из которых в нормальное состояние затруднен по тем или иным причинам. Переход из метастабильного состояния в нормальное возможен лишь в результате дополнительного возбуждения, например теплового. Разграничение на флуоресценцию и фосфоресценцию является достаточно условным. Люминесценция под действием света называется фотолюминесценцией, под действием бомбардировки электронами - катодолюминесценцией, под действием электрического поля - электролюминесценцией, под действием химических превращений - хемилюминесценцией. Люминесцирующие вещества называются люминофорами.
4 В зависимости от характера элементарных процессов, приводящих к люминесцентному излучению, различают спонтанные, вынужденные и рекомбинационные процессы люминесценции, а также резонансную флуоресценцию. Резонансная флуоресценция наблюдается в парах атомов и состоит в спонтанном высвечивании с того же энергетического уровня, на котором оказался излучающий атом при поглощении энергии от источника люминесценции. При возбуждении резонансной флуоресценции светом имеет место резонансное излучение, переходящее в резонансное рассеяние при увеличении плотности паров. Спонтанная люминесценция состоит в том, что под действием источника люминесценции вначале происходит возбуждение атомов (молекул или ионов) на промежуточные возбужденные энергетические уровни. Далее с этих уровней происходят излучательные, а чаще безизлучательные переходы на уровни, с которых излучается люминесцентное свечение. Такой вид люминесценции наблюдается у сложных молекул в парах и растворах, у примесных центров в твердых телах. Наблюдается также при переходах из экситонных состояний.
Вынужденная (метастабилъная) люминесценция характерна тем, что под действием источника люминесценции происходит переход на метастабильный уровень, а затем следует переход на уровень люминесцентного излучения. Примером является фосфоресценция органических веществ. Рекомбинационная люминесценция представляет собой рекомбинационное излучение, которое возникает при воссоединении тех частиц, которые были разделены при поглощении энергии от источника люминесценции (в газах - радикалы или ионы, в кристаллах - электроны и дырки).
Рекомбинационная люминесценция может происходить на дефектных или примесных центрах (центры люминесценции), когда дырки захватываются на основной уровень центра, а электроны - на его возбужденный уровень.
5 При электронном возбуждении люминесценции энергия бомбардирующих электронов передается электронам атомов (или молекул, ионов) и переводит их в возбужденное состояние. Передача энергии возможна лишь при условии, что кинетическая энергия бомбардирующего электрона
где Ея и Еъ - полная энергия атома (молекулы, иона) соответственно в нормальном и ближайшем к нему возбужденном состояниях. Атом (молекула, ион) возвращается из возбужденного состояния в нормальное, испустив квант света (фотон) частоты v:
При достаточных энергиях возбуждения возвращение атома (молекулы, иона) из возбужденного в нормальное состояние может происходить в несколько этапов через всё менее возбужденные состояния. Этому соответствует испускание нескольких фотонов различных частот, причем суммарная их энергия равна энергии начального возбуждения.
6 Фотолюминесценция возбуждается светом видимой или ультрафиолетовой области спектра. Для сложных люминесцирующих веществ (сложные молекулы, конденсированные среды) спектральный состав фотолюминесценции не зависит от длины волны света, вызывающего люминесценцию, и подчиняется правилу Стокса.
Наблюдаются линейчатые, полосатые и сплошные спектры фотолюминесценции. Ее характер существенно зависит от агрегатного состояния вещества. У ряда кристаллофосфоров с увеличением частоты возбуждающего света квантовый выход растет при условии , где - ширина запрещенной зоны (размножение фотонов при фотолюминесценции).
7 Электролюминесценция в газах вызывается электрическим разрядом, в котором энергия возбуждения сообщается молекулам газа механизмом электронного или ионного удара. Возбужденное состояние при электролюминесценции всегда вызывается прохождением какого-либо тока и, таким образом, связано с наличием электрического поля. Электролюминесценция в твердых телах наблюдается, в частности, на p-n переходе в полупроводниках.
8° Хемилюминесценция сопровождает некоторые экзотермические химические реакции. Химические превращения в веществе сопровождаются перестройкой внешних электронных оболочек атомов. Излучение света приводит к образованию химического соединения с более устойчивой в данном окружении и при данных условиях электронной конфигурацией. Хемилюминесценция часто сопровождает процессы окисления с образованием более устойчивых продуктов сгорания.
Свечение при хемилюминесценции вызывается молекулами (атомами, ионами) продуктов реакции в возбужденных электронных, колебательных и вращательных состояниях. Примерами хемилюминесценции являются свечение высокотемпературных и низкотемпературных пламен, свечение при рекомбинации перекисных радикалов в цепном окислении жидких углеводородов.
... более дорогостоящими, нежели обычные рентгеновские системы, однако по мере развития компьютерной техники и систем визуализации находят все более широкое применение. Цифровая рентгенодиагностика обеспечивается компьютерной технологией.Дисплей Блок долговременной памяти Устройство документирования Компьютер + память изображенияИнтерфейс данныхПриемник изображения Пациент Рентгеновский аппарат ...
... стандартам, образцам, предъявляется получателем изготовителю в установленный срок. Глава 9. Характеристика цены . В 4-ом квартале, после некоторого укрепления в сентябре, мировая цена нефти опять упала, несмотря на технические осложнения на промыслах некоторых нефтедобывающих стран за пределами ОПЕК и ограничение добычи почти в пределах принятых обязательств ...
... дактилоскопической экспертизы складывается из ознакомления с обстоятельствами дела , установления задач и объёма исследования. Эксперт знакомится с постановлением о назначении экспертизы , уясняет поставленные вопросы. В рамках дактилоскопических исследований следов пальцев рук человека эта деятельность имеет свои специфические особенности , выражающиеся в следующем : · характер поставленных ...
... обычная система электронно-оптического преобразования для просвечивания, из ЭОП, телевизионного тракта с высоким разрешением, рентгеновского высоковольтного генератора и рентгеновского излучателя Рис.5 Цифровая рентгенография с экрана ЭОП 1-генератор; 2-рентгеновская трубка; 3-пациент; 4-ЭОП; 5-видеокамера; 6-аналого-цифровой преобразователь; 7-накопитель изображений; 8-видеопроцессор; 9-сеть; ...
0 комментариев