Методы расчета сложных электрических цепей

3785
знаков
1
таблица
14
изображений

Уральский государственный технический университет – УПИ

Кафедра автоматики и управления в технических системах

Методы расчета

сложных электрических цепей

Екатеринбург


Расчетное задание

Для заданной электрической цепи, в которой , , а остальные параметры указаны в таблице, требуется рассчитать:

·        все токи и напряжения методом контурных токов;

·        все токи и напряжения методом узловых напряжений;

·        ток через сопротивление R6 методом эквивалентного генератора.

Номер схемы

, В

, В

, В

, Ом

, Ом

, Ом

, Ом

2 8 16 5 91 180 100 120

Метод контурных токов

Составим систему для метода контурных токов:

(1)

Найдем собственные и взаимные сопротивления контуров:

,

,

.

,

,

.

Подставим найденные значения  и данные значения  в систему (1):

Решая систему, находим:

, , .

Из схемы видно, что:

, ,.

Соответственно, значения напряжений (рассчитываем по закону Ома: ):

, , ,

, ,.

Метод узловых напряжений

Прежде, чем применять метод узловых напряжений, преобразуем все источники напряжения в эквивалентные источники тока:

, , ,

, , .

Рассчитаем собственную и взаимную проводимости:

,

,

.

,

,

.

Найдем токи в источниках по формуле :

, , .

Запишем узловые токи:

, , .

Составим систему для метода узловых напряжений:

(2)

Подставим найденные значения  и  в систему (2):

Решая систему, находим:

, , .

Из схемы видно, что:

,

,

,

,

,

.

Соответственно, значения сил токов (рассчитываем по закону Ома: ):

, , ,

, , .

Метод эквивалентных источников

С помощью эквивалентных преобразований, заменим исходную схему на следующую:

Для этого, рассчитаем напряжение между точкам А и Б методом контурных токов:

Контурные уравнения:

Тогда, эти уравнения и имеют матричный вид:

Подставим конкретные значения:

Из решения этой системы, имеем:

.

Выразим токи в ветвях через контурные токи:

Подставим конкретные значения:

Найдем напряжение на отрезке АБ:

Замкнем все источники напряжения и найдем входное сопротивление внешней цепи:

Рассчитаем сопротивление полученной цепи. Для этого преобразуем ее следующим образом:

Рассчитаем сопротивления R13, R14, R34:

Найдем общее сопротивление цепи:

Заменим внешнюю, по отношению к ветви, цепь, содержащую сопротивление R6, эквивалентным источником напряжения:

Тогда:

Результаты расчётов токов и напряжений в методе контурных токов практически совпали с результатами метода узловых напряжений, небольшие отклонения связаны с округлениями при вычислениях. Значение тока I6, найденное методом эквивалентного генератора, совпало со значениями, полученными в методах контурных токов. Это говорит о правильности расчётов.

1)                Проектирование фильтра Баттерворта верхних частот:

Wp=2*pi*8e3 рад/с – частота, ограничивающая область подавления;

Ws=2*pi*1e4 рад/с – гарантированная частота области пропускания;

Rp=3 дБ – уровень полосы подавления;

Rs=30дБ – уровень полосы пропускания;

Построение АЧХ фильтра:

[n, Wc]=buttord (Wp, Ws, Rp, Rs, 's') – определение порядка фильтра и частоты на уровне 3 дБ;

[z, p, k]=buttap(n) – способ аппроксимации фильтра;

[b, a]=zp2tf (z, p, k) – низкочастотный прототип фильтра;

[bt, at]=lp2hp (b, a, Wc) – переход к высоким частотам;

f=linspace (0,2e4,100) – определение полосы частот;

k=freqs (bt, at, 2*pi*f) – модуль АЧХ;

plot (f, abs(k)) – построение АЧХ:

2)                Построение фильтра, тип которого не известен:

m=[zeros (1,11), ones (1,5), linspace (0. 9,0,10)];

f=[0:25]*100;

plot (f, m):

fn=[fn 1] – добавляем количество нормированных частот до 1;

m=[m 0] – количество амплитуд должно равняться количеству частот;

b=fir2 (100, fn, m);

k=freqz (b, 1, fn);

plot (fn, abs(k))

freqz (b, 1)

Вывод: В ходе лабораторной работы с помощью прикладного пакета MATLAB были спроектированы аналоговый фильтр Баттерворта верхних частот и произвольный фильтр. Графики, полученные в ходе проектирования прилагаются в отчете.


Информация о работе «Методы расчета сложных электрических цепей»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 3785
Количество таблиц: 1
Количество изображений: 14

Похожие работы

Скачать
13339
0
34

... по частям, как в пункте I}=                II.                        В результате получаем закон изменения искомой величины при подаче на вход цепи импульса заданной формы: Расчет и построение графика спектральной плотности прямоугольного импульса Основой спектрального анализа является то, что любой непрерывный сигнал можно представить как периодический с периодом . Энергия ...

Скачать
1916
0
1

ков и методом контурных токов Вариант 2: Используя метод контурных токов найти токи во всех ветвях электрической цепи и составить баланс мощностей для электрической схемы, приведенной ниже, если E1 = 10 В r01 = 2 Ом Е2 = 2 В r02 = 3 ОМ Е3 = 6В r01 = 1,5 Ом R1 = 5,5 Ом R4 = R5 = 5 Oм R6 = 4,5 Ом Ход работы: 1. В предложенной электрической схеме выделил независимые контуры. ...

Скачать
14619
1
5

... , I5 = –I33 Если некоторые токи в ветвях окажутся отрицательными, его означает, что действительные направления токов в них противоположны условно принятым. 1.3.2 Метод узловых потенциалов (МУП) Ток в любой ветви электрической цепи можно определить по известным потенциалам узлов, к которым она подключена, или напряжению между этими узлами. Согласно второму закону Кирхгофа для любой ветви ...

Скачать
5602
0
22

... . При расчетах реальные электрические цепи заменяют эквивалентными схемами, в которых реальные устройства заменены совокупностью идеальных (т.е. обладающих одним свойством) элементов, что упрощает расчеты. Задачей теории линейных электрических цепей является изучение совместного действия всех образующих цепь элементов общими методами независимо от физических процессов, определяющих их работу. ...

0 комментариев


Наверх